970
Views
17
CrossRef citations to date
0
Altmetric
Invited Review

Recent progress on RF orbital angular momentum antennas

ORCID Icon, , , , , & show all
Pages 275-300 | Received 24 Oct 2019, Accepted 13 Dec 2019, Published online: 03 Jan 2020

References

  • Gnauck A, Winzer P, Chandrasekhar S, et al. Spectrally efficient long-haul WDM transmission using 224-Gb/s polarization-multiplexed 16-QAM. J Lightwave Technol. 2011;29(4):373–377.
  • Sano A, Masuda H, Kobayashi T, et al. Ultra-high capacity WDM transmission using spectrally-efficient PDM 16-QAM modulation and C-and extended L-band wideband optical amplification. J Lightwave Technol. 2011;29(4):578–586.
  • Ryf R, Randel S, Gnauck A, et al. Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 MIMO processing. J Lightwave Technol. 2012;30(4):521–531.
  • Lei T, Zhang M, Li Y, et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light Sci Appl. 2015;4(3):e257.
  • Marzetta T. Massive MIMO: an introduction. Bell Labs Tech J. 2015;20:11–22.
  • Elshaari A, Zadeh I, Fognini A, et al. On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits. Nat Commun. 2017;8(1):379.
  • Miao P, Zhang Z, Sun J, et al. Orbital angular momentum microlaser. Science. 2016;353(6298):464–467.
  • Zhai X, Amira A, Bensaali F, et al. Zynq soc based acceleration of the lattice Boltzmann method. Concurrency Comput Pract Experience. 2019;31:e5184.
  • Xu J, Bi K, Zhai X, et al. A dual-band microwave filter design for modern wireless communication systems. IEEE Access. 2019;7:98786–98791.
  • Wang J, Yang J, Fazal I, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photonics. 2012;6(7):488–496.
  • Djelouat H, Zhai X, Al Disi M, et al. System-on-chip solution for patients biometric: a compressive sensing-based approach. IEEE Sen J. 2018;18(23):9629–9639.
  • Xie Z, Lei T, Li F, et al. Ultra-broadband on-chip twisted light emitter for optical communications. Light Sci Appl. 2018;7(4):18001.
  • Qu W, Liu H, Wang J, et al. Adjustable round-pulse time delayer for round-robin differential phase-shift quantum key distribution. Opt Commun. 2019;448:43–47.
  • Lin S, Wang H, Wu F, et al. Room-temperature production of silver-nanofiber film for large-area, transparent and flexible surface electromagnetic interference shielding. npj Flexible Electron. 2019;3(1):6.
  • Yan Y, Xie G, Lavery M, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat Commun. 2014;5:4876.
  • Su H, Shen X, Su G, et al. Efficient generation of microwave plasmonic vortices via a single deep-subwavelength meta-particle. Laser Photonics Rev. 2018;12(9):1800010.
  • Padgett M, Bowman R. Tweezers with a twist. Nat Photonics. 2011;5(6):343–348.
  • Bozinovic N, Yue Y, Ren Y, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science. 2013;340(6140):1545–1548.
  • Maguid E, Yulevich I, Veksler D, et al. Photonic spin-controlled multifunctional shared-aperture antenna array. Science. 2016;352(6290):1202–1206.
  • Vieira J, Trines R, Alves E, et al. Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering. Nat Commun. 2016;7:10371.
  • Wang J. Advances in communications using optical vortices. Photonics Res. 2016;4(5):B14–B28.
  • Chu J, Chu D, Smithwick Q, et al. Encoding and multiplexing of 2D images with orbital angular momentum beams and the use for multiview color displays. Research. 2019;2019:9564593.
  • Poynting J. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proc R Soc Lond A. 1909;82(557):560–567.
  • Beth R. Mechanical detection and measurement of the angular momentum of light. Phys Rev. 1936;50(2):115–125.
  • Allen L, Beijersbergen M, Spreeuw R, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A. 1992;45(11):8185–8189.
  • Jing L, Wang Z, Lin X, et al. Spiral field generation in Smith-Purcell radiation by helical metagratings. Research. 2019;2019:3806132.
  • Li C, Zhao S. Efficient separating orbital angular momentum mode with radial varying phase. Photonics Res. 2017;5(4):267–270.
  • Vanacore G, Berruto G, Madan I, et al. Ultrafast generation and control of an electron vortex beam via chiral plasmonic near fields. Nat Mater. 2019;18:573–579.
  • Zhou J, Zhang W, Chen L. Experimental detection of high-order or fractional orbital angular momentum of light based on a robust mode converter. Appl Phys Lett. 2016;108(11):111108.
  • Willner A, Huang H, Yan Y, et al. Optical communications using orbital angular momentum beams. Adv Opt Photonics. 2015;7(1):66–106.
  • Zhang W, Zheng S, Hui X, et al. Mode division multiplexing communication using microwave orbital angular momentum: an experimental study. IEEE Trans Wirel Commun. 2017;16(2):1308–1318.
  • Liu C, Pang K, Zhao Z, et al. Single-end adaptive optics compensation for emulated turbulence in a bi-directional 10-Mbit/s per channel free-space quantum communication link using orbital-angular-momentum encoding. Research. 2019;2019:8326701.
  • Yu S. Potentials and challenges of using orbital angular momentum communications in optical interconnects. Opt Express. 2015;23(3):3075–3087.
  • Ren Y, Wang Z, Xie G, et al. Free-space optical communications using orbital-angular-momentum multiplexing combined with MIMO-based spatial multiplexing. Opt Lett. 2015;40(18):4210–4213.
  • Willner A, Ren Y, Xie G, et al. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing. Phil Trans R Soc A. 2017;375(2087):20150439.
  • Chen M, Mazilu M, Arita Y, et al. Creating and probing of a perfect vortex in situ with an optically trapped particle. Opt Rev. 2015;22(1):162–165.
  • Yuan T, Wang H, Qin Y, et al. Electromagnetic vortex imaging using uniform concentric circular arrays. IEEE Antennas Wirel Propag Lett. 2016;15:1024–1027.
  • Aspden R, Morris P, He R, et al. Heralded phase-contrast imaging using an orbital angular momentum phase-filter. J Optics. 2016;18(5):055204.
  • Zhao M, Gao X, Xie M, et al. Measurement of the rotational Doppler frequency shift of a spinning object using a radio frequency orbital angular momentum beam. Opt Lett. 2016;41(11):2549–2552.
  • Schemmel P, Maccalli S, Pisano G, et al. Three-dimensional measurements of a millimeter wave orbital angular momentum vortex. Opt Lett. 2014;39(3):626–629.
  • Schemmel P, Pisano G, Maffei B. Modular spiral phase plate design for orbital angular momentum generation at millimetre wavelengths. Opt Express. 2014;22(12):14712–14726.
  • Wei W, Mahdjoubi K, Brousseau C, et al. Horn antennas for generating radio waves bearing orbital angular momentum by using spiral phase plate. IET Microw Antennas Propag. 2016;10(13):1420–1427.
  • Hui X, Zheng S, Hu Y, et al. Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam. IEEE Antennas Wirel Propag Lett. 2015;14:966–969.
  • Bai X, Liang X, He C, et al. Design of a horn lens antenna for OAM generation. IEEE Antennas Wirel Propag Lett. 2015;14:2081–2082.
  • Tamburini F, Mari E, Thidé B, et al. Experimental verification of photon angular momentum and vorticity with radio techniques. Appl Phys Lett. 2011;99(20):204102.
  • Mari E, Anzolin G, Tamburini F, et al. Fabrication and testing of l = 2 optical vortex phase masks for coronography. Opt Express. 2010;18(3):2339–2344.
  • Mari E, Spinello F, Oldoni M, et al. Near-field experimental verification of separation of OAM channels. IEEE Antennas Wirel Propag Lett. 2015;14:556–558.
  • Byun W, Lee Y, Kim B, et al. Simple generation of orbital angular momentum modes with azimuthally deformed Cassegrain subreflector. Electron Lett. 2015;51(19):1480–1482.
  • Tamburini F, Mari E, Parisi G, et al. Tripling the capacity of a point-to-point radio link by using electromagnetic vortices. Radio Sci. 2015;50(6):501–508.
  • Byun W, Kim K, Kim B, et al. Multiplexed Cassegrain reflector antenna for simultaneous generation of three orbital angular momentum (OAM) modes. Sci Rep. 2016;6:27339.
  • Huang W, Li J, Wang H, et al. Vortex electromagnetic waves generated by using a laddered spiral phase plate and a microstrip antenna. Electromagnetics. 2016;36(2):102–110.
  • Barbuto M, Trotta F, Bilotti F, et al. Circular polarized patch antenna generating orbital angular momentum. Prog Electromagn Res. 2014;148:23–30.
  • Mao F, Li T, Shao Y, et al. Orbital angular momentum radiation from circular patches. Prog Electromagn Res. 2016;61:13–18.
  • Zhang Z, Xiao S, Li Y, et al. A circularly polarized multimode patch antenna for the generation of multiple orbital angular momentum modes. IEEE Antennas Wirel Propag Lett. 2017;16:521–524.
  • Gui L, Akram M, Liu D, et al. Circular slot antenna systems for OAM waves generation. IEEE Antennas Wirel Propag Lett. 2017;16:1443–1446.
  • Zheng S, Hui X, Jin X, et al. Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna. IEEE Trans Antennas Propag. 2015;63(4):1530–1536.
  • Zhang Z, Zheng S, Jin X, et al. Generation of plane spiral OAM waves using traveling-wave circular slot antenna. IEEE Antennas Wirel Propag Lett. 2016;16:8–11.
  • Zhang Z, Zheng S, Zhang W, et al. Experimental demonstration of the capacity gain of plane spiral OAM-based MIMO system. IEEE Microw Wirel Components Lett. 2017;27(8):757–759.
  • Hui X, Zheng S, Chen Y, et al. Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas. Sci Rep. 2015;5:10148.
  • Zheng S, Zhang W, Zhang Z, et al. Generation and propagation characteristics of electromagnetic vortices in radio frequency. Photonics Res. 2016;4(5):B9–B13.
  • Zhang W, Zheng S, Hui X, et al. Four-OAM-mode antenna with traveling-wave ring-slot structure. IEEE Antennas Wirel Propag Lett. 2017;16:194–197.
  • Pan Y, Zheng S, Zheng J, et al. Generation of orbital angular momentum radio waves based on dielectric resonator antenna. IEEE Antennas Wirel Propag Lett. 2017;16:385–388.
  • Liang J, Zhang S. Orbital angular momentum (OAM) generation by cylinder dielectric resonator antenna for future wireless communications. IEEE Access. 2016;4:9570–9574.
  • Mohammadi S, Daldorff L, Bergman J, et al. Orbital angular momentum in radio—a system study. IEEE Trans Antennas Propag. 2010;58(2):565–572.
  • Bai Q, Tennant A, Allen B. Experimental circular phased array for generating OAM radio beams. Electron Lett. 2014;50(20):1414–1415.
  • Wei W, Mahdjoubi K, Brousseau C, et al. Generation of OAM waves with circular phase shifter and array of patch antennas. Electron Lett. 2015;51(6):442–443.
  • Zhao M, Gao X, Xie M, et al. Generation of coupled radio frequency orbital angular momentum beam with an optical-controlled circular antenna array. Opt Commun. 2018;426:126–129.
  • Spinello F, Mari E, Oldoni M, et al. Experimental near field OAM-based communication with circular patch array. arXiv preprint arXiv: 1507.06889. 2015.
  • Liu B, Cui Y, Li R. Delay in space: orbital angular momentum beams transmitting and receiving in radio frequency. Electromagnetics. 2016;36(7):409–421.
  • Yuan T, Qin Y, Cheng Y, et al. Generation of OAM radio beams with modified uniform circular array antenna. Electron Lett. 2016;52(11):896–898.
  • Xu P, Zhu C, Cui Z, et al. Design and analysis of dual-band antenna array generating dual-mode vortex electromagnetic waves. Microw Opt Technol Lett. 2019;61(10):2275–2281.
  • Kang L, Liu H, Qin Y, et al. Generation of OAM beams using phased array in the microwave band. IEEE Trans Antennas Propag. 2016;64(9):3850–3857.
  • Gao X, Zhao M, Xie M, et al. 2D optically controlled radio frequency orbital angular momentum beam steering system based on a dual-parallel Mach–Zehnder modulator. Opt Lett. 2019;44(2):255–258.
  • Xu J, Zhao M, Ru Z, et al. A wideband F-shaped microstrip antenna. IEEE Antennas Wirel Propag Lett. 2017;16:829–832.
  • Gong Y, Wang R, Deng Y, et al. Generation and transmission of OAM-carrying vortex beams using circular antenna array. IEEE Trans Antennas Propag. 2017;65(6):2940–2949.
  • Yuan T, Cheng Y, Wang H, et al. Mode characteristics of vortical radio wave generated by circular phased array: theoretical and experimental results. IEEE Trans Antennas Propag. 2017;65(2):688–695.
  • Bai X, Liang X, Li J, et al. Rotman lens-based circular array for generating five-mode OAM radio beams. Sci Rep. 2016;6(1):27815.
  • Chen X, Zheng S, Zhang W, et al. Free-space radio communication employing OAM multiplexing based on Rotman lens. IEEE Microw Wirel Components Lett. 2016;26(9):738–740.
  • Li H, Kang L, Wei F, et al. A low-profile dual-polarized microstrip antenna array for dual-mode OAM applications. IEEE Antennas Wirel Propag Lett. 2017;16:3022–3025.
  • Guo Z, Yang G. Radial uniform circular antenna array for dual-mode OAM communication. IEEE Antennas Wirel Propag Lett. 2017;16:404–407.
  • Liu D, Gui L, Zhang Z, et al. Multiplexed OAM wave communication with two-OAM-mode antenna systems. IEEE Access. 2019;7:4160–4166.
  • Liu B, Lin G, Cui Y, et al. An orbital angular momentum (OAM) mode reconfigurable antenna for channel capacity improvement and digital data encoding. Sci Rep. 2017;7(1):9852.
  • Kang L, Li H, Zhou J, et al. A mode-reconfigurable orbital angular momentum antenna with simplified feeding scheme. IEEE Trans Antennas Propag. 2019;67(7):4866–4871.
  • Liu B, Cui Y, Li R. A broadband dual-polarized dual-OAM-mode antenna array for OAM communication. IEEE Antennas Wirel Propag Lett. 2017;16:744–747.
  • Bai X, Liang X, Sun Y, et al. Experimental array for generating dual circularly-polarized dual-mode OAM radio beams. Sci Rep. 2017;7:40099.
  • Liu Q, Chen Z, Liu Y, et al. Circular polarization and mode reconfigurable wideband orbital angular momentum patch array antenna. IEEE Trans Antennas Propag. 2018;66(4):1796–1804.
  • Guo Z, Yang G, Jin Y. Circularly polarised OAM antenna using an aperture-coupled uniform circular array. IET Microw Antennas Propag. 2018;12(9):1594–1600.
  • Li L, Zhou X. Mechanically reconfigurable single-arm spiral antenna array for generation of broadband circularly polarized orbital angular momentum vortex waves. Sci Rep. 2018;8:5128.
  • Bi K, Xu J, Yang D, et al. Generation of orbital angular momentum beam with circular polarization ceramic antenna array. IEEE Photonics J. 2019;11(2):7901508.
  • Xu J, Hao Y, Bi K, et al. Microwave orbital angular momentum beam generation based on circularly polarized metasurface antenna array. Eng Sci. 2019;6:30–35.
  • Wu R, Zhang L, Bao L, et al. Digital metasurface with phase code and reflection–transmission amplitude code for flexible full-space electromagnetic manipulations. Adv Opt Mater. 2019;7(8):1801429.
  • Wang Z, Fu X, Zhang Z, et al. Based metasurface: turning waste-paper into a solution for electromagnetic pollution. J Clean Prod. 2019;234:588–596.
  • Yu N, Genevet P, Kats M, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science. 2011;334(6054):333–337.
  • Xu B, Wu C, Wei Z, et al. Generating an orbital-angular-momentum beam with a metasurface of gradient reflective phase. Opt Mater Express. 2016;6(12):3940–3945.
  • Qi X, Zhang Z, Zong X, et al. Generating dual-mode dual-polarization OAM based on transmissive metasurface. Sci Rep. 2019;9(1):97.
  • Chen Y, Zheng S, Li Y, et al. A flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam. IEEE Antennas Wirel Propag Lett. 2016;15:1156–1158.
  • Yu S, Li L, Shi G, et al. Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain. Appl Phys Lett. 2016;108(12):121903.
  • Lei X, Cheng Y. High-efficiency and high-polarization separation reflectarray element for OAM-folded antenna application. IEEE Antennas Wirel Propag Lett. 2017;16:1357–1360.
  • Zhang Y, Lyu Y, Wang H, et al. Transforming surface wave to propagating OAM vortex wave via flat dispersive metasurface in radio frequency. IEEE Antennas Wirel Propag Lett. 2018;17(1):172–175.
  • Byun W, Choi H, Cho Y. Orbital angular momentum (OAM) antennas via mode combining and canceling in near-field. Sci Rep. 2017;7(1):12805.
  • Qin F, Wan L, Li L, et al. A transmission metasurface for generating OAM beams. IEEE Antennas Wirel Propag Lett. 2018;17(10):1793–1796.
  • Xu J, Bi K, Zhang R, et al. A small-divergence-angle orbital angular momentum metasurface antenna. Research. 2019;2019:9686213.
  • Jiang S, Chen C, Zhang H, et al. Achromatic electromagnetic metasurface for generating a vortex wave with orbital angular momentum (OAM). Opt Express. 2018;26(5):6466–6477.
  • Fu X, Cui T. Recent progress on metamaterials: from effective medium model to real-time information processing system. Prog Quant Electron. 2019;67:100223.
  • Xu H, Hu G, Li Y, et al. Interference-assisted kaleidoscopic meta-plexer for arbitrary spin-wavefront manipulation. Light Sci Appl. 2019;8:3.
  • Wang T, Xie R, Zhu S, et al. Dual-band high efficiency terahertz meta-devices based on reflective geometric metasurfaces. IEEE Access. 2019;7:58131–58138.
  • Ji C, Song J, Huang C, et al. Dual-band vortex beam generation with different OAM modes using single-layer metasurface. Opt Express. 2019;27(1):34–44.
  • Madni H, Iqbal S, Liu S, et al. Fully-control of OAM vortex beam and realization of retro and negative reflection at oblique incidence using dual-band 2-bit coding metasurface. arXiv preprint arXiv:1905.07080. 2019.
  • Meng X, Wu J, Wu Z, et al. Generation of multiple beams carrying different orbital angular momentum modes based on anisotropic holographic metasurfaces in the radio-frequency domain. Appl Phys Lett. 2019;114(9):093504.
  • Yu S, Li L, Shi G, et al. Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain. Appl Phys Lett. 2016;108(24):241901.
  • Qin F, Gao S, Cheng W, et al. A high-gain transmitarray for generating dual-mode OAM beams. IEEE Access. 2018;6:61006–61013.
  • Akram Z, Li X, Qi Z, et al. Broadband high-order OAM reflective metasurface with high mode purity using subwavelength element and circular aperture. IEEE Access. 2019;7:71963–71971.
  • Wang L, Liu S, Kong X, et al. Broadband vortex beam generating for multi-polarisations based on a single-layer quasi-spiral metasurface. Electron Lett. 2019;55(22):1168–1170.
  • Dong X, Sun H, Gu C, et al. Generation of ultra-wideband multi-mode vortex waves based on monolayer reflective metasurface. Prog Electromagn Res. 2019;80:111–120.
  • Tang S, Li X, Pan W, et al. High-efficiency broadband vortex beam generator based on transmissive metasurface. Opt Express. 2019;27(4):4281–4291.
  • Xu H, Liu H, Ling X, et al. Broadband vortex beam generation using multimode Pancharatnam–Berry metasurface. IEEE Trans Antennas Propag. 2017;65(12):7378–7382.
  • Chen M, Jiang L, Wei E. Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies. IEEE Trans Antennas Propag. 2017;65(1):396–400.
  • Wang X, Chen Y, Zheng S, et al. Reconfigurable OAM antenna based on sub-wavelength phase modulation structure. IET Microw Antennas Propag. 2018;12(3):354–359.
  • Han J, Li L, Yi H, et al. 1-bit digital orbital angular momentum vortex beam generator based on a coding reflective metasurface. Opt Mater Express. 2018;8(11):3470–3478.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.