827
Views
9
CrossRef citations to date
0
Altmetric
Invited Reviews

Resonance phenomena in electromagnetic metamaterials for the terahertz domain: a review

, &
Pages 1314-1337 | Received 12 Nov 2019, Accepted 03 Jan 2020, Published online: 22 Jan 2020

References

  • Veselago VG. The electrodynamics of substances with simultaneously negative values of ϵ AND µ. Soviet Physics Uspekhi. 1968;10:509–514.
  • Pendry JB, Holden AJ, Robbins DJ, et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microw Theory Tech. 1999;47:2075–2084.
  • Smith DR, Padilla WJ, Vier DC, et al. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett. 2000;84(18):4184.
  • Shelby RA, Smith DR, Schultz S. Experimental verification of a negative index of refraction. Science. 2001;292:77–79.
  • Lapine M, Powell D, Gorkunov M, et al. Structural tunability in metamaterials. Appl Phys Lett. 2009;95:084105.
  • Tao H, Strikwerda AC, Fan K, et al. Reconfigurable terahertz metamaterials. Phys Rev Lett. 2009;103(14):147401.
  • Padilla WJ, Taylor AJ, Highstrete C, et al. Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys Rev Lett. 2006;96(10):107401.
  • Chen HT, Padilla WJ, Zide JMO, et al. Active terahertz metamaterial devices. Nature. 2006;444(7119):597–600.
  • Devi KM, Islam M, Chowdhury DR, et al. Plasmon-induced transparency in graphene-based terahertz metamaterials. EPL (Europhys Lett). 2017;120:27005.
  • Milton GW, Cherkaev AV. Which elasticity tensors are realizable? J Eng Mater Technol. 1995;117(7):483–493.
  • Walther M, Ortner A, Meier H, et al. Terahertz metamaterials fabricated by inkjet printing. Appl Phys Lett. 2009;95(25):251107.
  • Gil I, Martın F, Rottenberg X, et al. Tunable stop-band filter at Q-band based on RF-MEMS metamaterials. Electron Lett. 2007;43:1153.
  • Zheludev NI, Kivshar YS. From metamaterials to metadevices. Nat Mater. 2012;11:917–924.
  • Yu N, Genevet P, Kats MA, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science. 2011;334:333–337.
  • Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater. 2014;13:139–150.
  • Lin D, Fan P, Hasman E, et al. Dielectric gradient metasurface optical elements. Science. 2014;345:298–302.
  • Kuznetsov AI, Miroshnichenko AE, Fu YH, et al. Magnetic light. Sci Rep. 2012;2:492.
  • Ginn JC, Brener I, Peters DW, et al. Realizing optical magnetism from dielectric metamaterials. Phys Rev Lett. 2012;108:097402.
  • Jahani S, Jacob Z. All-dielectric metamaterials. Nat Nanotechnol. 2016;11:23–36.
  • Yao Y, Shankar R, Kats MA, et al. Electrically tunable metasurface perfect absorbers for ultrathin Mid-infrared optical modulators. Nano Lett. 2014;14(11):6526–6532.
  • Andryieuski A, Lavrinenko AV. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach. Opt Express. 2013;21:9144.
  • Zhang Y, Li T, Zeng B, et al. A graphene based tunable terahertz sensor with double Fano resonances. Nanoscale. 2015;7:12682–12688.
  • Yen T-J, Padilla WJ, Fang N, et al. Terahertz magnetic response from artificial materials. Science. 2004;303(5663):1494–1496.
  • Ferguson B, Zhang X-C. Materials for terahertz science and technology. Nat Mater. 2002;1:26–33.
  • Walther M, Fischer BM, Ortner A, et al. Chemical sensing and imaging with pulsed terahertz radiation. Anal Bioanal Chem. 2010;397:1009–1017.
  • Kawase K, Ogawa Y, Watanabe Y, et al. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt Express. 2003;11:2549.
  • Qin J, Xie L, Ying Y. Determination of tetracycline hydrochloride by terahertz spectroscopy with PLSR model. Food Chem. 2015;170:415–422.
  • Qin J, Xie L, Ying Y. Feasibility of terahertz time-domain spectroscopy to detect tetracyclines hydrochloride in infant milk powder. Anal Chem. 2014;86:11750–11757.
  • Maeng I, Baek SH, Kim HY, et al. Feasibility of using terahertz spectroscopy to detect seven different pesticides in wheat flour. J Food Prot. 2014;77:2081–2087.
  • Hua Y, Zhang H. Qualitative and quantitative detection of pesticides with terahertz time-domain spectroscopy. IEEE Trans Microw Theory Tech. 2010;58:2064–2070.
  • Ueno Y, Rungsawang R, Tomita I, et al. Quantitative measurements of amino acids by terahertz time-domain transmission spectroscopy. Anal Chem. 2006;78:5424–5428.
  • Liu J, Li Z, Hu F, et al. Identification of GMOs by terahertz spectroscopy and ALAP–SVM. Opt Quantum Electron 2015;47:685.
  • Baek SH, Bin Lim H, Chun HS. Detection of melamine in foods using terahertz time-domain spectroscopy. J Agric Food Chem. 2014;62:5403–5407.
  • Massaouti M, Daskalaki C, Gorodetsky A, et al. Detection of harmful residues in honey using terahertz time-domain spectroscopy. Appl Spectrosc. 2013;67:1264.
  • Shiraga K, Yuichi O, Naoshi K, et al. Evaluation of the hydration state of saccharides using terahertz time-domain attenuated total reflection spectroscopy. Food Chem. 2013;140:315.
  • Mickan SP, Menikh A, Liu H, et al. Label-free bioaffinity detection using terahertz technology. Phys Med Biol. 2002;47:3789.
  • Grischkowsky D, Keiding S, van Exter M, et al. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J Opt Soc Am B. 1990;7:2006.
  • Luo L, Chatzakis I, Wang J, et al. Broadband terahertz generation from metamaterials. Nat Commun. 2014;5:3055.
  • Liu M, Hwang HY, Tao H, et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature. 2012;487:345.
  • Rao SJM, Srivastava YK, Kumar G, et al. Modulating fundamental resonance in capacitive coupled asymmetric terahertz metamaterials. Sci Rep. 2018;8:16773.
  • Grady NK, Heyes JE, Chowdhury DR, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science. 2013;340:1304.
  • Rao SJM, Sarkar R, Kumar G, et al. Gradual cross polarization conversion of transmitted waves in near field coupled planar terahertz metamaterials. OSA Continuum. 2019;2:603.
  • Tao H, Landy NI, Bingham CM, et al. A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt Express. 2008;16:7181.
  • Tao H, Bingham CM, Strikwerda AC, et al. Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization. Phys Rev B. 2008;78:241103.
  • Driscoll T, Andreev GO, Basov DN. Tuned permeability in terahertz split-ring resonators for devices and sensors. Appl Phys Lett. 2007;91:062511.
  • O’Hara JF, Singh R, Brener I, et al. Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. Opt Express. 2008;16(3):1786.
  • Islam M, Rao SJM, Kumar G, et al. Role of resonance modes on terahertz metamaterials based thin film sensors. Sci Rep. 2017;7:7355.
  • Keshavarz A, Vafapour Z. Sensing avian influenza viruses using terahertz metamaterial reflector. IEEE Sens J. 2019;19(13):5161.
  • Banerjee S, Amith CS, Kumar D, et al. Ultra-thin subwavelength film sensing through the excitation of dark modes in THz metasurfaces. Opt Commun. 2019;453:124366.
  • Chen H-T, Padilla WJ, Zide JMO, et al. Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices. Opt Lett. 2007;32:1620.
  • Rao SJM, Kumar G, Azad AK, et al. Ultrafast relaxation of charge carriers induced switching in terahertz metamaterials. J Infrared Millim Terahertz Waves. 2018;39:1211.
  • Yen TJ, Padilla WJ, Fang N, et al. Terahertz magnetic response from artificial materials. Science. 2004;303:1494.
  • Linden S, Enkrich C, Wegener M, et al. Magnetic response of metamaterials at 100 terahertz. Science. 2004;306:1351.
  • Katsarakis N, Koschny T, Kafesaki M, et al. Electric coupling to the magnetic resonance of split ring resonators. Appl Phys Lett. 2004;84:2943.
  • Rockstuhl C, Zentgraf T, Guo H, et al. Resonances of split-ring resonator metamaterials in the near infrared. Applied Physics B. 2006;84:219.
  • Rockstuhl C, Lederer F, Etrich C, et al. On the reinterpretation of resonances in split-ring-resonators at normal incidence. Opt Express. 2006;14:8827.
  • Wood RW. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Lond Edinb Dublin Philos Mag J Sci. 1902;4:21,396.
  • Chowdhury R, Singh D, O’Hara R, et al. Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor. Appl Phys Lett. 2011;99:231101.
  • Moser HO, Casse BDF, Wilhelmi O, et al. Terahertz response of a microfabricated rod–split-ring-resonator electromagnetic metamaterial. Phys Rev Lett. 2005;94(6):063901.
  • Azad AK, Dai JM, Zhang W. Transmission properties of terahertz pulses through subwavelength double split-ring resonators. Opt Lett. 2006;31(5):634.
  • Karmakar S, Varshney RK, Roy Chowdhury D. Theoretical investigation of active modulation and enhancement of Fano resonance in THz metamaterials. OSA Contin. 2019;2:531.
  • Gu J, Singh R, Tian Z, et al. Terahertz superconductor metamaterial. Appl Phys Lett. 2010;97(7):071102.
  • Paul O, Imhof C, Reinhard B, et al. Negative index bulk metamaterial at terahertz frequencies. Opt Express. 2008;16(9):6736–6744.
  • Singh R, Plum E, Menzel C, et al. Terahertz metamaterial with asymmetric transmission. Phys Rev B. 2009;80(15):153104.
  • Peralta XG, Smirnova EI, Azad AK, et al. Metamaterials for THz polarimetric devices. Opt Express. 2009;17(2):773.
  • Miyamaru F, Kuboda S, Taima K, et al. Three-dimensional bulk metamaterials operating in the terahertz range. Appl Phys Lett. 2010;96(8):081105.
  • Singh R, Azad AK, O’Hara JF, et al. Effect of metal permittivity on resonant properties of terahertz metamaterials. Opt Lett. 2008;33(13):1506.
  • Singh R, Smirnova E, Taylor AJ, et al. Optically thin terahertz metamaterials. Opt Express. 2008;16(9):6537.
  • Fedotov VA, Rose M, Prosvirnin SL, et al. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys Rev Lett. 2007;99:147401.
  • Singh R, Al-Naib IAI, Koch M, et al. Sharp Fano resonances in THz metamaterials. Opt Express. 2011;19:6312–6319.
  • Roy Chowdhury D, Su X, Zeng Y, et al. Excitation of dark plasmonic modes in symmetry broken terahertz metamaterials. Opt Express. 2014;22:19401.
  • Karmakar S, Banerjee S, Kumar D, et al. Deep-subwavelength coupling-induced Fano resonances in symmetric terahertz metamaterials. Phys. Status Solidi (RRL) – Rapid Res Lett. 2019;13:1900310.
  • Roy Chowdhury D, Xu N, Zhang W, et al. Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials. J Appl Phys. 2015;118:023104.
  • Harris SE. Electromagnetically induced transparency. Phys Today. 1997;50:36.
  • Imamoglu ABKJ, Harris SE. Observation of electromagnetically induced transparency. Phys Rev Lett. 1991;66:2593.
  • Luk’yanchuk B, Zheludev NI, Maier SA, et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater. 2010;9:707.
  • Jing H, Zhu Z, Zhang X, et al. Plasmon-induced transparency in terahertz metamaterials. Sci China Inf Sci. 2013;56:1.
  • Zhang S, Genov DA, Wang Y, et al. Plasmon-induced transparency in metamaterials. Phys Rev Lett. 2008;101:047401.
  • Papasimakis N, Fedotov VA, Zheludev NI. Metamaterial analog of electromagnetically induced transparency. Phys Rev Lett. 2008;101:253903.
  • Tassin P, Zhang L, Koschny T, et al. Low-Loss metamaterials based on classical electromagnetically induced transparency. Phys Rev Lett. 2009;102:053901.
  • Singh R, Rockstuhl C, Lederer F, et al. Coupling between a dark and a bright eigenmode in a terahertz metamaterial. Phys Rev B. 2009;79:085111.
  • Chiam SY, Singh R, Rockstuhl C, et al. Analogue of electromagnetically induced transparency in a terahertz metamaterial. Phys Rev B. 2009;80:153103.
  • Li Z, Ma Y, Huang R, et al. Manipulating the plasmon-induced transparency in terahertz metamaterials. Opt Express. 2011;19:8912.
  • Ma Y, Li Z, Yang Y, et al. Plasmon-induced transparency in twisted Fano terahertz metamaterials. Opt Mater Express. 2011;1:391.
  • Liu X, Gu J, Singh R, et al. Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode. Appl Phys Lett. 2012;100:131101.
  • Devi KM, Chowdhury DR, Kumar G, et al. Dual-band electromagnetically induced transparency effect in a concentrically coupled asymmetric terahertz metamaterial. J Appl Phys. 2018;124:063106.
  • Fleischhauer M, Imamoglu A, Marangos JP. Electromagnetically induced transparency: optics in coherent media. Rev Mod Phys. 2005;77:633.
  • Cong L, Xu N, Chowdhury DR, et al. Nonradiative and radiative resonances in coupled metamolecules. Adv Opt Mater. 2016;4:252.
  • Devi KM, Sarma AK, Roy Chowdhury D, et al. Plasmon induced transparency effect through alternately coupled resonators in terahertz metamaterial. Opt Exp. 2017;25(9):10484.
  • Lindell IV, Sihvola AH, Tretyakov SA, et al. Electromagnetic waves in chiral and bi-isotropic media. Boston (MA): Artech House Publishers; 1994.
  • Wang B, Zhou J, Koschny T, et al. Chiral metamaterials: simulations and experiments. J Opt A: Pure Appl Opt. 2009;11:114003.
  • Papakostas A, Potts A, Bagnall DM, et al. Optical manifestations of planar chirality. Phys Rev Lett. 2003;90:107404.
  • Rogacheva AV, Fedotov VA, Schwanecke AS, et al. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Phys Rev Lett. 2006;97:177401.
  • Plum E, Zhou J, Dong J, et al. Metamaterial with negative index due to chirality. Phys Rev B. 2009;79:035407.
  • Bai B, Svirko Y, Turunen J, et al. Optical activity in planar chiral metamaterials: theoretical study. Phys Rev A. 2007;76:023811.
  • Kuwata-Gonokami M, Saito N, Ino Y, et al. Giant optical activity in quasi-two-dimensional planar nanostructures. Phys Rev Lett. 2005;95:227401.
  • Decker M, Klein MW, Wegener M, et al. Circular dichroism of planar chiral magnetic metamaterials. Opt Lett. 2007;32:856.
  • Kwon D, Werner PL, Werner DH. Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation. Opt Exp. 2008;16:11802.
  • Kanda N, Konishi K, Kuwata-Gonokami M. Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns. Opt Exp 2007;15(18):11117.
  • Zhang S, Park Y-S, Li J, et al. Negative refractive index in chiral metamaterials. Phys Rev Lett. 2009;102:023901.
  • Zhou J, Chowdhury DR, Zhao R, et al. Terahertz chiral metamaterials with giant and dynamically tunable optical activity. Phys Rev B. 2012;86:035448.
  • Dubovik VM, Tugushev VV. Toroid moments in electrodynamics and solid-state physics. Phys Rep. 1990;187:145.
  • Vrejoiu C. Electromagnetic multipoles in cartesian coordinates. J Phys A: Math General. 2002;35:9911.
  • Gongora T, Ley-Koo E. Complete electromagnetic multipole expansion including toroidal moments. Rev Mex Fís. 2006;52:188.
  • Dubovik VM, Cheshkov AA. Multipole expansion in classical and quantum field theory and radiation. Sov J Particles Nucl. 1974;5:318.
  • Radescu EE, Vaman G. Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles. Phys Rev E. 2002;65:046609.
  • Kaelberer T, Fedotov VA, Papasimakis N, et al. Toroidal dipolar response in a metamaterial. Science. 2010;330:1510.
  • Sawada K, Nagaosa N. Optical magnetoelectric effect in multiferroic materials: evidence for a lorentz force acting on a ray of light. Phys Rev Lett. 2005;95:237402.
  • Fedotov VA, Marinov K, Boardman AD, et al. On the aromagnetism and anapole moment of anthracene nanocrystals. New J Phys. 2007;9:95.
  • Alborghetti S, Puppin E, Brenna M, et al. Absence of toroidal moments in “aromagnetic” anthracene. New J Phys. 2008;10:063019.
  • Papasimakis N, Fedotov VA, Marinov K, et al. Gyrotropy of a metamolecule: wire on a torus. Phys Rev Lett. 2009;103:093901.
  • Dong Z-G, Ni P, Zhu J, et al. Toroidal dipole response in a multifold double-ring metamaterial. Opt Express. 2012;20:13065–13070.
  • Ye QW, Guo LY, Li MH, et al. The magnetic toroidal dipole in steric metamaterial for permittivity sensor application. Physica Scripta. 2013;88:055002.
  • Ding C, Jiang L, Sun C, et al. Stable terahertz toroidal dipolar resonance in a planar metamaterial. Physica Status Solidi (b). 2015;252(6):1388.
  • Huang YW, Chen WT, Wu PC, et al. Design of plasmonic toroidal metamaterials at optical frequencies. Opt Exp. 2012;20:1760.
  • Wu PC, Chen WT, Huang Y-W, et al. Three-dimensional metamaterials: from split ring resonator to toroidal metamolecule. Proc SPIE. 2014: 9163. Plasmonics: Metallic Nanostructures and Their Optical Properties XII, 91630M; 17 August 2014.
  • Prodan E, Radloff C, Halas NJ, et al. A hybridization model for the plasmon response of complex nanostructures. Science. 2003;302:419.
  • Prodan E, Nordlander P. Plasmon hybridization in spherical nanoparticles. J Chem Phys. 2004;120:5444.
  • Nordlander P, Oubre C, Prodan E, et al. Plasmon hybridization in nanoparticle dimers. Nano Lett. 2004;4:899.
  • Brandl DW, Oubre C, Nordlander P. Plasmon hybridization in nanoshell dimers. J Chem Phys. 2005;123:024701.
  • Oubre C, Nordlander P. Finite-difference time-domain studies of the optical properties of nanoshell dimers. J Phys Chem B. 2005;109:10042.
  • Nordlander P, Prodan E. Plasmon hybridization in nanoparticles near metallic surfaces. Nano Lett. 2004;4:2209.
  • Liu H, Li T, Wang S-m, et al. Hybridization effect in coupled metamaterials. Front Phys China. 2010;5(3):277.
  • Liu H, Genov DA, Wu DM, et al. Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures. Phys Rev B. 2007;76:073101.
  • Hongcang G, Liu N, Fu L, et al. Resonance hybridization in double split-ring resonator metamaterials. Opt Exp 2007;15(19):12095.
  • Chowdhury DR, Singh R, Taylor AJ, et al. Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial. Appl Phys Lett. 2013;102:011122.
  • Chowdhury DR, O’Hara JF, Taylor AJ, et al. Orthogonally twisted planar concentric split ring resonators towards strong near field coupled terahertz metamaterials. Appl Phys Lett. 2014;104:101105.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.