57
Views
7
CrossRef citations to date
0
Altmetric
Articles

Accordable filters by defect modes in single and double negative star waveguides grafted dedicated to electromagnetic communications applications

, , , &
Pages 539-558 | Received 05 Aug 2019, Accepted 28 Jan 2020, Published online: 13 Feb 2020

References

  • Ghoumid K, Elhechmi I, Mekaoui S, et al. Analysis of optical filtering in waveguides with a high index modulation using the extended coupled mode theory by hybridization of a matrix method. Opt Commun. 2013;289:85–91. doi: 10.1016/j.optcom.2012.10.008
  • Ben-Ali Y, Tahri Z, Bouzidi A, et al. Propagation of electromagnetic waves in a one-dimensional photonic crystal containing two defects. J Mater Environ Sci. 2017;8:870–876.
  • Bouzidi A, Bria D. Low temperature sensor based on one-dimensional photoniccrystals. ICEERE 2018, Saidia, 2019. Vol. 519, p. 157–163.
  • Bouzidi A, Bria D, Falyouni F, et al. A biosensor based on one-dimensional photonic crystal for monitoring blood glycemia. JMES. 2017;8:3892–3896.
  • Bria D, Djafari-Rouhani B, Akjouj A, et al. Band structure and omnidirectional photonic band gap in lamellar structures with left handed materials. Phys Rev E. 2004;69:066613–066613-10. doi: 10.1103/PhysRevE.69.066613
  • Shabat MM, El-Amassi DM. Left-handed materials photonic crystal waveguide sensors. Sens Lett. 2015;13:1007–1010. doi: 10.1166/sl.2015.3578
  • Pérez-Rodríguez JE, Palomino-Ovando MA, Cocoletzi GH. Surface modes coupling in one-dimensional metamaterial photonic crystals with defects. Superlattices Microstruct. 2015;83:383–389. doi: 10.1016/j.spmi.2015.03.009
  • Taya SA. Slab waveguide with air core layer and anisotropic left-handed material claddings as a sensor. Opto-Electron Rev. 2014;22:252–257. doi: 10.2478/s11772-014-0201-3
  • Chang T-W, Cheng C-J, Wu C-J. Use of single-negative material as a tunable defect in a dielectric photonic crystal heterostructure. Appl Opt. 2016;55:825–829. doi: 10.1364/AO.55.000825
  • Adl P, Hajian H, Tajalli P, et al. Optimized optical bistability in a 1D photonic crystal containing alternate layers of uniaxial anisotropic single negative materials with coupled nonlinear defects. Optik. 2016;127:1190–1194. doi: 10.1016/j.ijleo.2015.10.219
  • Alireza A, Wu C-J. Single-negative metamaterial periodic multilayer doped by magnetized cold plasma. Appl Opt. 2016;55:2086–2090. doi: 10.1364/AO.55.002086
  • Zamani M, Hajesmaeili HN. Performance enhancement of reflection-type magnetophotonic crystals backed -negative magnetic metamaterials. Superlattices Microstruct. 2018;120:473–478. doi: 10.1016/j.spmi.2018.06.005
  • Kazempour B. Influence of the polarization and optical axis on the transmission behavior in a one di mensional photonic crystal containing uniaxial metamaterial. Chin J Phys. 2018;56:2597–2604. doi: 10.1016/j.cjph.2018.07.014
  • Veselago VG. The electrodynamics of subtances with simulataneously negative values of ϵ and μ. Soviet Physics Uspekhi. 1968;10:509–514. doi: 10.1070/PU1968v010n04ABEH003699
  • Dockrey JA, Horsley SA, Hooper R, et al. Direct observation of negative-index microwave surface waves. Sci Rep. 2016;6:22018–22022. doi: 10.1038/srep22018
  • Chen J, Wang Y, Jia B, et al. Observation of the inverse Doppler effect in negative-index materials at optical frequencies. Nat Photonics. 2011;5:239–242. doi: 10.1038/nphoton.2011.17
  • Zhang S, Park YS, Li J, et al. Negative refractive index in chiral metamaterials. Phys Rev Lett. 2009;102:023901. doi: 10.1103/PhysRevLett.102.023901
  • He H, Qiu C, Ye L, et al. Topological negative refraction of surface acoustic waves in a Weylphononic crystal. Nature. 2018;560:61–64. doi: 10.1038/s41586-018-0367-9
  • Shelby RA, Smith DR, Schultz S. Experimental verification of a negative index of refraction. Science. 2001;292:77–79. doi: 10.1126/science.1058847
  • Marqués R, Martel J, Mesa F, et al. Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides. Phys Rev Lett. 2002;89:138901–138904. doi: 10.1103/PhysRevLett.89.183901
  • Vasseur JO, Deymier PA, Dobrzynski L, et al. Absolute band gaps and electromagnetic transmission in quasi-one-dimensional comb structures. Phys Rev B. 1997;55:10434–10442. doi: 10.1103/PhysRevB.55.10434
  • Dolorzynski L, Akjouj A, Djafari-Rouhani B, et al. Giant gaps in photonic band structure. Phys Rev B. 1998;57:9388–9391. doi: 10.1103/PhysRevB.57.R9388
  • Tan W, Sun Y, Wang ZG, et al. Propagation of photons in metallic chain through side-branch resonators. J Phys D. 2011;44:335101–335101. doi: 10.1088/0022-3727/44/33/335101
  • Tan W, Wang ZG, Chen H. Complete tunning of light through mu-negative media. Prog Electromagn Res. 2009;8:27–37. doi: 10.2528/PIERM09060201
  • Cocoletzi GH, Dobrzynski L, Djafari-Rouhani B, et al. Electromagnetic wave propagation in quasi-one-dimensional comb-like structures made up of dissipative negative-phase -velocity materials. J Phys Condens Matter. 2006;18:3683–3690. doi: 10.1088/0953-8984/18/15/014
  • Yin CP, Wang HZ. Narrow transmission bands of quasi-1D comb-like photonic waveguides containing negative index materials. Phys Lett A. 2009;373:1093–1096. doi: 10.1016/j.physleta.2009.01.029
  • Weng Y, Wang ZG, Chen H. Band structure of comb-like photonic crystals containing metamaterial. Opt Commun. 2007;277:80–83. doi: 10.1016/j.optcom.2007.04.049
  • Zhang L, Wang Z, Chen H, et al. Experimental study of quasi-one-dimensional comb- like photonic crystals containing left-handed material. Opt Commun. 2008;281:3681–3685. doi: 10.1016/j.optcom.2008.03.042
  • Ben-ali Y, Tahri Z, Falyouni F, et al. Study about a filter using a resonator defect in a one dimensional photonic comb containing a left-hand material. Proceedings of the 1st International Conference on Electronic Engineering and Renewable Energy, ICEERE, Saidia, 2018. Vol. 519, p. 146–156.
  • Ben-ali Y, Tahri Z, Ouariach A, et al. Double frequency filtering by photonic comb-like. 2018 International Symposium on Advanced Electrical and Communication Technologies (ISAECT). IEEE; 2019. p. 1–6.
  • Ben-ali Y, Tahri Z, Bria D. Electromagnetic filters based on a single negative photonic comb-like structure. Prog Electromagn Res C. 2019;92:41–56. doi: 10.2528/PIERC18122001
  • Ghadban A, Ghoumid K, Bouzidi A, et al. Coupled selective electromagnetic waves in 1D photonic crystal with two planar cavities. International Conference on Multimedia Computing and Systems (ICMCS), 2016. p. 1–4.
  • DjafariRouhani B, Vasseur JO, Akjouj A, et al. Giant stop bands and defect modes in one-dimensional waveguide with dangling side branches. Prog Surf Sci. 1998;59:255–264. doi: 10.1016/S0079-6816(98)00051-3
  • Wang Y, Yang X, Lu J, et al. Comb-like optical transmission spectra generated from one-dimensional two-segment-connected two-material waveguide networks optimized by genetic algorithm. Phys Lett A. 2014;378:1200–1207. doi: 10.1016/j.physleta.2014.02.028
  • Yang X, Song H, Liu TC. Comb-like optical transmission spectrum resulting from a four-cornered two-waveguide-connected network. Phys Lett A. 2013;377:3048–3051. doi: 10.1016/j.physleta.2013.09.026

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.