106
Views
1
CrossRef citations to date
0
Altmetric
Articles

An artificial neural network-based non-destructive microwave technique for monitoring fluoride contamination in water

, &
Pages 612-622 | Received 29 Jul 2019, Accepted 05 Feb 2020, Published online: 19 Feb 2020

References

  • Sankhla MS, Kumar R. Fluoride contamination of water in India and its impact on public health. ARC J Forensic Sci. 2018;3(2):10–15.
  • Roy S, Dass G. Fluoride contamination in drinking water – a review. Resour Environ. 2013;3(3):53–58.
  • Das B, Talukdar J, Sarma S, et al. Fluoride and other inorganic constituents in groundwater of Guwahati, Assam, India. Curr Sci. 2003;85(5):657–660.
  • Dhillona A, Nairb M, Kumara D. Analytical methods for determination and sensing of fluoride in biotic and abiotic sources: a review. Anal Methods. 2016;8:5338–5352. doi: 10.1039/C6AY01534D
  • Hussain I, Ahamad KU, Nath P. Low-cost, robust, and field portable smartphone platform photometric sensor for fluoride level detection in drinking water. Anal Chem. 2016;89(1):767–775. doi: 10.1021/acs.analchem.6b03424
  • Levin S, Krishnan S, Rajkumar S, et al. Monitoring of fluoride in water samples using a smartphone. Sci Total Environ. 2016;551–552:101–107. doi: 10.1016/j.scitotenv.2016.01.156
  • Korostynska O, Mason A, Al-Shamma'a AI. Flexible microwave sensors for real-time analysis of water contaminants. J Electromagn Waves Appl. 2013;27(16):2075–2089. doi: 10.1080/09205071.2013.832393
  • Dasoqi NAl, Mason A, Alkhaddar R, et al. Real-time nondestructive microwave sensor for nutrient monitoring in waste water treatment. J Phys. 2011;307(1):012043–012047.
  • Gorji A, Kaleita A, Bowler N. Towards low-cost sensors for real-time monitoring of contaminant ions in water sources. 2017 IEEE MTT-S International Microwave Symposium (IMS); Honololu, HI; 2017. p. 529–532.
  • Frau I, Wylie S, Byrne P, et al. Continuous Detection of Copper and Bromide in Polluted Water using f-EM Sensors. 2018 12th International Conference on Sensing Technology (ICST); Limerick; 2018. p. 35–38.
  • Turgul V, Kale I. Permittivity extraction of glucose solutions through artificial neural networks and non-invasive microwave glucose sensing. Sens Actuators. 2018;277:65–72. doi: 10.1016/j.sna.2018.03.041
  • Belrhiti MD, Bri S, Nakheli A, et al. Dielectric constant determination of liquid using rectangular waveguide structure combined with EM simulation. J Mater Environ Sci. 2012;3(3):575–584.
  • Gadani DH, Rana VA, Bhatnagar SP, et al. Effect of salinity on the dielectric properties of water. Indian J Pure Appl Phys. 2012;50:405–410.
  • Kaatze U. Reference liquids for the calibration of dielectric sensors and measurement instruments. Meas Sci Technol. 2007;18:967–976. doi: 10.1088/0957-0233/18/4/002
  • Roy S, Neihart NM, Bowler N. Coaxial microwave resonant sensor design for monitoring ionic concentration in aqueous solutions. 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Houston, TX, 2018. p. 1–6.
  • Mathur P, Thakur A, Augustine R, et al. A novel non-invasive microwave technique for monitoring salinity in water. TENCON 2019 – 2019 IEEE Region 10 Conference (TENCON); Kochi, India; 2019. p. 226–229.
  • Belhadj-Tahar N, Fourrier-Lamer A. Broad-band analysis of discontinuity used for dielectric measurement. IEEE Trans Microw Theory Tech. 1986;34(3):346–350. doi: 10.1109/TMTT.1986.1133342
  • Díaz-Morcillo A, Monzó Cabrera J, Requena Pérez ME, et al. Application of genetic algorithms in the determination of dielectric properties of materials at microwave frequencies. International Work Conference on the Interplay Between Natural and Artificial Computation; IWINAC 2007. p. 608–616. (Lecture notes in computer science; 4528).
  • Acikgoz H, Le Bihan Y, Meyer O, et al. Neural networks for broad-band evaluation of complex permittivity using a coaxial discontinuity. Eur Phys J Appl Phys. 2007;39:197–201. doi: 10.1051/epjap:2007073
  • Qaddoumi NN, El-Hag AH, Saker Y. Outdoor insulators testing using artificial neural network-based near-field microwave technique. IEEE Trans Instrum Meas. 2014;63(2):260–266. doi: 10.1109/TIM.2013.2280486
  • Maazi M, Benzaim O, Glay D, et al. Detection and characterization of buried macroscopic cracks inside dielectric materials by microwave techniques and artificial neural networks. IEEE Trans Instrum Meas. 2008;57(12):2819–2826. doi: 10.1109/TIM.2008.926396
  • Hasan A, Peterson AF. Measurement of complex permittivity using artificial neural networks. IEEE Antennas Propag Mag. 2011;53(1):200–203. doi: 10.1109/MAP.2011.5773614
  • Panda S, Tiwari NK, Akhtar MJ. Computationally intelligent sensor system for microwave characterization of dielectric sheets. IEEE Sens J. 2016;16(20):7483–7493. doi: 10.1109/JSEN.2016.2599856
  • Acikgoz H, Santandrea L, Le Bihan Y, et al. Generation and use of optimised databases in microwave characterisation. IET Sci Meas Tech. 2008;2(6):467–473. doi: 10.1049/iet-smt:20080086
  • Ali A, Hu B, Ramahi OM. Intelligent detection of cracks in metallic surfaces using a waveguide sensor loaded with metamaterial elements. Sensor. 2015;15(5):11402–11416. doi: 10.3390/s150511402
  • Mathur P, Perez MD, Augustine R, et al. NDECOAX: a software package for nondestructive evaluation of stratified dielectric media. SoftwareX. 2019;9:187–192. doi: 10.1016/j.softx.2019.02.001
  • Jarvis JB, Kim S. The interaction of radio-frequency fields with dielectric materials at macroscopic to mesoscopic scales. J Res Natl Inst Stand Technol. 2012;117(8):1–60. doi: 10.6028/jres.117.001
  • Bishop CM. Neural networks for pattern recognition. New York: Oxford University Press; 1995.
  • Nissen S. Implementation of a fast artificial neural network library (Fann). Copenhagen, Denmark: Department of Computer Science, University of Copenhagen (DIKU); 2003. (Report 31).
  • Igel C, Husken M. Improving the Rprop learning algorithm. Second International Symposium on Neural Computation. ICSC Academic Press, Canada/Switzerland; 2000. p. 115–121.
  • Buchner R, Hefter GT, Barthel J. Dielectric relaxation of aqueous NaF and KF solutions. J Chem Soc Faraday Trans. 1994;90(17):2475–2479. doi: 10.1039/ft9949002475
  • Fawcett WR, Tikanen AC. Role of solvent permittivity in estimation of electrolyte activity coefficients on the basis of the mean spherical approximation. J Phys Chem. 1996;100(10):4251–4255. doi: 10.1021/jp952379v
  • Misra D, Chabbra M, Epstein BR, et al. Noninvasive electrical characterization of materials at microwave frequencies using an open-ended coaxial line: test of an improved calibration technique. IEEE Trans Microw Theory Tech. 1990;38(1):8–14. doi: 10.1109/22.44150
  • Buckley F, Maryott AA. Tables of dielectric dispersion data for pure liquids and dilute solutions. Vol. 589. U.S. Department of Commerce, National Bureau of Standards; 1958.
  • Li S, Li S, Shahzad A, et al. Determination of microwave conductivity of electrolyte solutions from debye Drude model. PIERS Proceedings; Guangzhou, China; 2014. p. 670–673.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.