306
Views
0
CrossRef citations to date
0
Altmetric
Articles

Design and simulation investigations of high-power millimeter-wave gyrotron

, ORCID Icon &
Pages 744-758 | Received 08 Feb 2020, Accepted 29 Mar 2020, Published online: 15 Apr 2020

References

  • Kartikeyan MV, Borie E, Thumm M. Gyrotrons high-power microwave and millimeter wave technology. Berlin: Springer; 2004.
  • Felch KL, Danly BG, Jory HR, et al. Characteristics and applications of fast-wave gyrodevices. Proc IEEE. 1999;87:752–781. doi: 10.1109/5.757254
  • Blank M, Felch K, Borchard P, et al. Demonstration of a high-power long-pulse 140GHz gyrotron oscillator. IEEE Trans Plasma Sci. 2004;32:86–876. doi: 10.1109/TPS.2004.828815
  • Goldenberg AL, Litvak AG. Recent progress of high power millimeter wavelength gyrodevices. Phys Plasmas. 1995;2:2562–2572. doi: 10.1063/1.871218
  • Bratman VL. Gyrotron development for high power THz technologies at IAP RAS. J Infrared Millim THz Waves. 2012;33:715–723. doi: 10.1007/s10762-012-9898-6
  • Granatstein VL, Levush B, Danly BG, et al. A quarter century of gyrotron research and development. IEEE Trans Plasma Sci. 1997;25:1322–1335. doi: 10.1109/27.650903
  • Gold SH, Nusinovich GS. Review of high-power microwave source research. Rev Sci Ins. 1997;68:3945–3974. doi: 10.1063/1.1148382
  • Felch K. Long-pulse and CW tests of a 110-GHz gyrotron with an internal, quasioptical converter. IEEE Trans Plasma Sci. 1996;24:558–569. doi: 10.1109/27.532938
  • Blank M. Demonstration of a high-power long-pulse 140-GHz gyrotron oscillator. IEEE Trans Plasma Sci. 2000;32:867–876. doi: 10.1109/TPS.2004.828815
  • Felch K, Blank M, Borchard P, et al. Recent tests on 500 kW and 1 MW, multi-second-pulsed gyrotrons. In: Giruzzi G, editor. Electron cyclotron emission and electron cyclotron heating. Proceedings of the 12th Joint Workshop; 2002 May 13–16; Aix-en-Provence, France. World Scientific Publishing; 2003. p. 565–570.
  • Gantenbein G. Experimental results and numerical simulations of a high power 140 GHz gyrotron. IEEE Trans Plasma Sci. 1994;22:861–870. doi: 10.1109/27.338301
  • Dammertz G. Development of a 140 GHz, 1 MW, continuous wave gyrotron for the W7-X stellarator. IEEE Trans Plasma Sci. 2002;30:808–818. doi: 10.1109/TPS.2002.801509
  • Whaley DR, Tran MQ, Alberti S, et al. Startup methods for single-mode gyrotron operation. Phys Rev Lett. 1995;75:1304–1307. doi: 10.1103/PhysRevLett.75.1304
  • Idehara T, Mitsudo S, Sabchevski S, et al. Gyrotron FU series – current status of development and applications. Vacuum. 2001;62:123–132. doi: 10.1016/S0042-207X(00)00456-5
  • Thumm M. State-of-the-art of high power gyro-devices and free electron masers. Update. Karlsruhe: KIT; 2017.
  • Dumbrajs O, Shenggang L. Kinetic theory of electron-cyclotron resonance masers with asymmetry of the electron beam in a cavity. IEEE Trans Plasma Sci. 1992;20:126–132. doi: 10.1109/27.142811
  • Dumbrajs O. Eccentricity of the electron beam in a gyrotron cavity. Int J Infra Milli Waves. 1994;15:1255–1262. doi: 10.1007/BF02096079
  • Nusinovich GS, Dumbrajs O, Levush B. Wave interaction in gyrotrons with offaxis electron beams. Phys Plasmas. 1995;2:4621–4630. doi: 10.1063/1.870952
  • Zavol’sky NA, Zapevalov VE, Moiseev MA, et al. Influence of the axial misalignment of the electron beam and the cavity on the gyrotron parameters. Radiophys Quantum Electron. 2011;54:402–408. doi: 10.1007/s11141-011-9300-x
  • Airila MI. Degradation of operation mode purity in a gyrotron with an off-axis electron beam. Phys Plasmas. 2003;10:296–299. doi: 10.1063/1.1528938
  • Khutoryan E M, Dumbrajs O, Nusinovich GS. Theoretical study of the effect of electron beam misalignment on operation of the gyrotron FU IV A. IEEE Trans Plasma Sci. 2014;42:1586–1593. doi: 10.1109/TPS.2014.2322674
  • Avramidis KA. Numerical studies on the influence of cavity thermal expansion on the performance of a high-power gyrotron. IEEE Trans Electron Devices. 2018;65:2308–2315. doi: 10.1109/TED.2017.2782365
  • Liu Q, Liu Y, Chen Z. Investigation on heat transfer analysis and its effect on a multi-mode, beam-wave interaction for a 140 GHz, MW-class gyrotron. Phys Plasmas. 2018;25:043101. doi: 10.1063/1.4996701
  • Liu Q, Liu Y, Chen Z, et al. Thermoanalysis and its effect on the multimode beam-wave interaction for a 0.24-THz, Megawatt-Class gyrotron. IEEE Trans Electron Devices. 2018;65:704–709. doi: 10.1109/TED.2017.2783927
  • Singh U, Kumar A, Kumar N, et al. Thermal and structural analysis of MIG for gyrotron. J Fusion Energy. 2011;30:176–179. doi: 10.1007/s10894-010-9367-y
  • Vlasov SN, Zhislin GM, Orlova IM, et al. Irregular waveguides as open resonators. Radiophys Quantum Electron. 1969;12:12972–12978.
  • Schot SH. Eighty years of Sommerfeld’s radiation condition. Hist Math. 1992;19:385–401. doi: 10.1016/0315-0860(92)90004-U
  • Fliflet AW, Lee RC, Gold SH, et al. Time-dependent multimode simulation of gyrotron oscillators. Phys Rev A. 1991;43:6166–6176. doi: 10.1103/PhysRevA.43.6166
  • ANSYS help guide, version 15. Canonsburg (PA): ANSYS; 2013.
  • Kalaria PC. Systematic cavity design approach for a multifrequency gyrotron for DEMO and study of its RF behavior. Phys Plasmas. 2016;23:092503. doi: 10.1063/1.4962238
  • Troxell JD. GlidCop dispersion strengthened copper, potential application in fusion power generators. IEEE thirteenth symposium on Fusion Engineering; 1989 Oct 2–6; Knoxville (TN). IEEE; 1989. p. 761–765.
  • Kumar N, Kumar A, Singh U, et al. Thermal and structural analysis of interaction cavity and its effect on the operating mode excitation for a 120 GHz, 1MW gyrotron. Int J Thermophys. 2011;32:1038–1046. doi: 10.1007/s10765-011-0963-5
  • Zavolsky NA, Zapevalov VE, Moiseev MA. Efficiency enhancement of the relativistic gyrotron. Radiophys Quantum Electron. 2001;44:318–325. doi: 10.1023/A:1010422204317
  • Kesari V, Sudhakar R, Jayateertha D, et al. Simulation of a depressed collector for millimeter wave gyrotron. J Electromagn Wave Appl. 2019;33:1107–1118. doi: 10.1080/09205071.2019.1596841

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.