126
Views
0
CrossRef citations to date
0
Altmetric
Articles

Realization of a tunable double-fishnet metamaterial structure based on the plasmon-induced transparency

Pages 789-801 | Received 14 Jan 2020, Accepted 15 Apr 2020, Published online: 06 May 2020

References

  • Wang J, Fan C, He J, et al. Double Fanoresonances due to interplay of electric and magnetic plasmon modesin planar plasmonic structure with high sensing sensitivity. Opt Express. 2013;21:2236–2244. doi: 10.1364/OE.21.002236
  • Liu X, Gu J, Singh R, et al. Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode. Appl Phys Lett. 2012;100:131101. doi: 10.1063/1.3696306
  • He J, Wang Q, Ding P, et al. Optical switching based on polarization tunable plasmon-induced transparency in Disk/Rod hybrid metasurfaces. Plasmonics. 2015;10:1115–1121. doi: 10.1007/s11468-015-9911-8
  • Gu J, Singh R, Liu X, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat Commun. 2012;3:1151. doi: 10.1038/ncomms2153
  • Zhang S, Zhou S, Loy MMT, et al. Opticalstorage with electromagnetically induced transparency in a densecold atomic ensemble. Opt Lett. 2011;36:4530–4532. doi: 10.1364/OL.36.004530
  • Lu H, Liu X, Wang G, et al. Tunable high-channel-countbandpass plasmonic filters based on an analogue of electromagneticallyinduced transparency. Nanotechnology. 2012;23:444003. doi: 10.1088/0957-4484/23/44/444003
  • Liu M, Yin X, Ulin-Avila E, et al. A graphene-based broadband optical modulator. Nature. 2011;474:64–67. doi: 10.1038/nature10067
  • Chen C-Y, Un I-W, Tai N-H, et al. Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance. Opt Express. 2009;17(15372):20.
  • Dong Z-G, Liu H, Cao J-X, et al. Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials. Appl Phys Lett. 2010;97:114101. doi: 10.1063/1.3488020
  • Kurter C, Tassin P, Zhang L, et al. Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial. Phys Rev Lett. 2011;107:043901. doi: 10.1103/PhysRevLett.107.043901
  • Artar A, Yanik AA, Altug H. Multispectral plasmon induced transparency in coupled meta-atoms. Nano Lett. 2011;11:1685–1689. doi: 10.1021/nl200197j
  • Ling Y, Huang L, Hong W, et al. Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial. Nanoscale. 2018;10:19517–19523. doi: 10.1039/C8NR03564D
  • Duan X, Chen S, Yang H, et al. Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials. Appl Phys Lett. 2012;101:143105. doi: 10.1063/1.4756944
  • Chen H, Zhang H, Guo X, et al. Tunable plasmon-induced transparency in H-shaped Dirac semimetal metamaterial. Appl Opt. 2018;57:752–756. doi: 10.1364/AO.57.000752
  • Li Z, Ma Y, Huang R, et al. Manipulating the plasmon-induced transparency in terahertz metamaterials. Opt Express. 2011;19:8912–8919. doi: 10.1364/OE.19.008912
  • Shi X, Su X, Yang Y. Enhanced tunability of plasmon induced transparency in graphene strips. Appl Phys. 2015;117:143101. doi: 10.1063/1.4916748
  • Zhang S, Genov DA, Wang Y, et al. Plasmoninduced transparency in metamaterials. Phys Rev Lett. 2008;101:047401. doi: 10.1103/PhysRevLett.101.047401
  • Kekatpure RD, Barnard ES, Cai W, et al. Phase-coupled plasmon-induced transparency. Phys Rev Lett. 2010;104:243902. doi: 10.1103/PhysRevLett.104.243902
  • Masih G, Choudhury PK, Dehzangi A. Nanoengineered thin films of copper for the optical monitoring of urine – a comparative study of the helical and columnar nanostructures. J Electromagn Waves Appl. 2015;29:2321–2329. doi: 10.1080/09205071.2015.1070107
  • Baqir MA, Farmani A, Fatima T, et al. Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range. Appl Opt. 2018;57:9447–9454. doi: 10.1364/AO.57.009447
  • Baqir MA, Choudhury PK. Hyperbolic metamaterial-based UV absorber. IEEE Photon Technol Lett. 2017;29:1548–1551. doi: 10.1109/LPT.2017.2735453
  • Masih Ghasemi PK. Choudhury,complex Copper Nanostructures for Fluid sensing—a Comparative Study of the performance of Helical and Columnar Thin films. Plasmonics. 2018;13:131–139. doi: 10.1007/s11468-016-0492-y
  • Baqir MA, Choudhury PK, Farmani A, et al. Tunable plasmon induced transparency in graphene and hyperbolic metamaterial-based structure. IEEE Photonics J. 2019;11:4601510. doi: 10.1109/JPHOT.2019.2931586
  • Sheng-Xuan X, Zhai X, Wang L-L, et al. Plasmonically induced transparency in double-layered graphene nanoribbons. Photonics Res. 2018;6:692–702. doi: 10.1364/PRJ.6.000692
  • Yan X, Wang T, Xiao S, et al. Dynamically controllable plasmon induced transparency based on hybrid metal-graphene metamaterials. Sci Rep. 2017;7:13917. doi: 10.1038/s41598-017-14328-6
  • Harris S, Field J, Imamoğlu A. Nonlinear optical processes using electromagnetically induced transparency. Phys Rev Lett. 1990;64:1107 2.
  • Liu N, Langguth L, Weiss T, et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 2009;8:758. doi: 10.1038/nmat2495
  • Buchnev O, Podoliak N, Kaczmarek M, et al. Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonicswitch. Adv Optical Mater. 2015;3:674–679. doi: 10.1002/adom.201400494
  • Zhu WM, Liu AQ, Bourouina T, et al. Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy. Nat Commun. 2012;3:1274. doi: 10.1038/ncomms2285
  • Appavoo K, Haglund RF. Polarization selective phase-change nanomodulator. Sci Rep. 2014;4:6771. doi: 10.1038/srep06771
  • Driscoll T, Kim HT, Chae BG, et al. Memory metamaterials. Science. 2009;325:1518–1521. doi: 10.1126/science.1176580
  • Kanda N, Konishi K, Kuwata-Gonokami M. Light-induced terahertz optical activity. Opt Lett. 2009;34:3000. doi: 10.1364/OL.34.003000
  • Wen Q, Zhang H, Yang Q, et al. A tunable hybrid metamaterial absorber based on vanadium oxide films. J Phys D: Appl Phys. 2012;45:235106. doi: 10.1088/0022-3727/45/23/235106
  • Zhou J, Chowdhury DR, Zhao R, et al. Terahertz chiral metamaterials with giant and dynamically tunable optical activity. Phys Rev B. 2012;86:035448. doi: 10.1103/PhysRevB.86.035448
  • Zhang S, Fan WJ, Paniou NC, et al. Optical negative-index bulk metamaterials consisting of 2D perforated metaldielectric stacks. Phys Rev Lett. 2005;95:137404. doi: 10.1103/PhysRevLett.95.137404
  • Hua Y, Li Z. Analytic modal solution to transmission and collimation of light by one-dimensional nanostructured subwavelength metallic slits. J Appl Phys. 2009;105:013104. doi: 10.1063/1.3043885
  • Kuzel P, Kadlec F. Tunable structures and modulators for THz light. C R Physique. 2008;9:197–214. doi: 10.1016/j.crhy.2007.07.004
  • Nemec H, Kuzel P, Duvillaret L, et al. Highly tunable photonic crystalfilter for the terahertz range. Opt Lett. 2005;30:549–551. doi: 10.1364/OL.30.000549
  • Smith DR, Schult S, Markos P, et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B. 2002;65:195104–195108. doi: 10.1103/PhysRevB.65.195104
  • Li Z, Yu N. Modulation of mid-infrared light using graphene-metal plasmonic antennas. Appl Phys Lett. 2013;102(13):131108. doi: 10.1063/1.4800931
  • Yao Y, Kats MA, Genevet P, et al. Broad electrical tuning of grapheme loaded plasmonic antennas. Nano Lett. 2013;13(3):1257–1264. doi: 10.1021/nl3047943
  • Hwang J, Roh JW. Electrically tunable two-dimensional metasurfaces at near-infrared wavelengths. Opt Express. 2017;25(21):25071–25078. doi: 10.1364/OE.25.025071
  • Rakhshani MR, Mansouri-Birjandi MA. High sensitivity plasmonic sensor based on metal–insulator–metal waveguide and hexagonal-ring cavity. IEEE Sens J. 2016;16:3041–3046. doi: 10.1109/JSEN.2016.2522560

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.