238
Views
2
CrossRef citations to date
0
Altmetric
ARTICLES

A broadband directional circularly polarized spiral antenna on EBG structure

&
Pages 1563-1585 | Received 11 Feb 2020, Accepted 18 May 2020, Published online: 16 Jun 2020

References

  • Tuss J, Lockyer A, Alt K, et al. Conformal load bearing antenna structure. Proc. 37th AIAA Structural Dynamics and Materials Conf.; 1996. p. 836–843.
  • Lockyer AJ, Alt KH, Kudva JN, et al. Conformal load-bearing antenna structures (CLAS): Initiative for multiple military and commercial applications,’. SPIE. 1997;3046:182–196.
  • Lockyer AJ, et al. Design and development of a conformal loadbearing smart skin antenna: overview of the AFRL smart skin structures technology demonstration (S3TD). Proc. SPIE, vol. 3674, Jul. 1999. p. 410–424.
  • Banks D, Berden M, Baron W, et al. Structurally integrated X-Band array development. Multifunctional Structures /Integration of Sensors and Antennas. Meeting Proceedings RTO-MP-AVT-141, Paper 17. Neuilly-sur-Seine, France: RTO; 2006. p. 17-1–17-12.
  • You C, Tentzeris MM, Hwang W. ‘‘multilayer effects on microstrip antennas for their integration with mechanical structure,’. IEEE Trans. Antennas Propag. Apr. 2007;55:1051–1058. doi: 10.1109/TAP.2007.893401
  • Callus PJ. Novel concepts for conformal load-bearing antenna structure. Australian Government, Department of Defense, Defense Science and Technology Organisation, DSTO-TR-2096; DSTO 506 LorimerSt Fishermans Bend, Victoria 3207, Australia; 2007. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.455.4884&rep=rep1&type=pdf.
  • Zhou Y, Bayram Y, Du F, et al. Polymer-carbon nanotube sheets for conformal load bearing antennas. IEEE Trans. Antennas Propag. Jul. 2010;58(7):2169–2175. doi: 10.1109/TAP.2010.2048852
  • Urcia M, Banks D. Structurally integrated phased arrays. Proc. IEEE Aerosp. Conf.; Mar. 2011. p. 1–8.
  • Wang Z, Zhang L, Bayram Y, et al. Embroidered conductive fibers on polymer composite for conformal antennas. IEEE Trans. Antennas Propag. Sep. 2012;60(9):4141–4147. doi: 10.1109/TAP.2012.2207055
  • Bishop N, Miller J, Zeppettella D, et al. A broadband high-gain bi-layer LPDA for UHF conformal Load-Bearing antenna structures (CLAS) applications. IEEE Trans. Antennas Propag. May 2015;63(5):2359–2364. doi: 10.1109/TAP.2015.2409866
  • Zeppettella D, Ali M. VHF antenna for airfoil structural integration. IEEE Antennas and Propagation Society International Symposium; 26 June - 1July 2016. DOI:10.1109/APS.2016.7696637.
  • Zeppettella D, Ali M. Conformal Load-Bearing antenna structure for MIMO applications,’. Appl Comput Electromagn Soc J. September 2018;33(9):979–989.
  • Hartl DJ, Frank GJ, Huff GH, et al. A liquid metal-based structurally embedded vascular antenna: i. concept and multiphysical modeling,’’. Smart Mater. Struct. 2017;26:025001. (15pp). doi: 10.1088/1361-665X/aa5142
  • Wright MD, Baron W, Miller J, et al. MEMS reconfigurable broadband patch antenna for conformal applications. IEEE Trans. Antennas Propagat. June 2018;66(6):2770–2778. doi: 10.1109/TAP.2018.2819818
  • Oetting JD, Jen T, The mobile user objective system. IEEE Antennas Propagat Mag., Johns Hopkins APL Technical Dig. 2011;30(2):103–112.
  • Typical Application of the 400-500 MHz frequency band [Online available ] https://www.ntia.doc.gov/files/ntia/publications/compendium/0420.00-0450.00_01MAR14.pdf.
  • Nakano H, Kogami K, Arai S, et al. A spiral antenna backed by a conducting plane reflector. IEEE Trans. Antennas Propagat. June 1986;34:791–796. doi: 10.1109/TAP.1986.1143893
  • Nakano H, Sasaki S, Oyanagi H, et al. Cavity-backed Archimedean spiral antenna with strip absorber,’. IET Microwaves, Antennas Propagat. 2008;2:725–730. doi: 10.1049/iet-map:20080022
  • Stutzman WL, Thiele GA. Antenna theory and design. 2nd ed. New York (NY): John Wiley and Sons Inc.; 1998.
  • Erkmen F, Chen C-C, Volakis JL. UWB Magneto-Dielectric ground plane for low-profile antenna applications. IEEE Antennas Propagat Mag. December 2008;50(4):211–216. doi: 10.1109/MAP.2008.4653714
  • Sievenpiper D. High-impedance electromagnetic surfaces, PhD Dissertation, University of California at Los Angeles, 1999.
  • Yang F, Rahmat-Samii Y. Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications. IEEE Trans. Antennas Propagat. Oct. 2003;51:2691–2703. doi: 10.1109/TAP.2003.817559
  • Abedin MF, Ali M. Effects of EBG reflection phase profiles on the input impedance and bandwidth of Ultra-thin directional dipoles. IEEE Trans. Antennas Propagat. Nov. 2005;53:3664–3672. doi: 10.1109/TAP.2005.858584
  • Akhoondzadeh-Asl L, Kern DJ, Hall PS, et al. Wideband dipoles on electromagnetic bandgap ground planes. IEEE Trans. Antennas Propagat. Sept. 2007;55:2426–2434. doi: 10.1109/TAP.2007.904071
  • Azad MZ, Ali M. Novel wideband dipole antenna on a mushroom EBG structure. IEEE Trans. Antennas Propagat. May 2008;AP-56(5):1242–1250. doi: 10.1109/TAP.2008.922673
  • Best S, Hanna D. Design of a broadband dipole in close proximity to an EBG ground plane,’. IEEE Antennas Propagat. Mag. Dec. 2008;50(6):52–64. doi: 10.1109/MAP.2008.4768923
  • Chamok NH, Anthony T, Weiss SJ, et al. Ultra-Thin UHF broadband antenna on a non-uniform aperiodic metasurface. IEEE Antennas Propagat Mag. April 2015;57:167–180. doi: 10.1109/MAP.2015.2414491
  • Bell JM, Iskander MF. A low-profile Archimedean spiral antenna using an EBG ground plane. IEEE Antennas Wireless Propagat Lett. December 2004;3(1):223–226. doi: 10.1109/LAWP.2004.835753
  • Nakano H, Hitosugi K, Tatsuzawa N, et al. Effects on the radiation characteristics of using a corrugated reflector with a helical antenna and an electromagnetic bandgap refelctor with a spiral antenna. IEEE Trans. Antennas Propagat. Jan. 2005;53(1):191–199. doi: 10.1109/TAP.2004.840755
  • Sanchez VC, McKinzie WE, Diaz RE. Broadband antennas over electronically reconfigurable artificial magnetic conductor. US Patent 6,917,343 B2, Jul. 12, 2005.
  • Yousefi L, Iravani BM, Ramahi OM. Enhanced bandwidth artificial magnetic ground plane for low-profile antennas. IEEE Antennas Wireless Propagat Lett. 2007;6:289–292. doi: 10.1109/LAWP.2007.895282
  • Ding C, Ruan C, Peng L, et al. A novel archimedean spiral antenna with uniplanar EBG substrate. 8th International Symposium on Antennas, Propagation and EM Theory, Date of Conference: 2-5 Nov. 2008.
  • Sapna BA, Patnam HR. Slow wave-modified low profile planar spiral antenna on EBG,’. Microw Opt Technol Letter. March 2009;51:1270–1274. doi: 10.1002/mop.24303
  • Nakano H, Kikkawa K, Kondo N, et al. Low-profile equiangular spiral antenna backed by an EBG reflector,’. IEEE Trans. Antennas Propag. May 2009;57:1309–1318. doi: 10.1109/TAP.2009.2016697
  • Nakano H, Miyake J, Oyama M, et al. Metamaterial spiral antenna,’. IEEE Antennas Wireless Propagat. Lett. Dec. 2011;10:1555–1558. doi: 10.1109/LAWP.2011.2181305
  • Grelier M, Djoma C, Jousset M, et al. Axial ratio improvement of an Archimedean spiral antenna over a radial AMC reflector,’. Appl Phys A. 2012;109(4):1081–1086. doi: 10.1007/s00339-012-7401-9
  • Palreddy S, Zaghloul AI, Weiss SJ. Performance of spiral antenna over broadband uniform-height progressive EBG surface. 7th European Conference of Antennas and Propagation (EUCAP), Gothenburg, Sweden; April 2013.
  • Palreddy S, Zaghloul AI, Anthony TK. Spiral antenna on broadband uniform-height progressive EBG structure without vias. IEEE Int. Symp. Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, Canada; 2015.
  • Palreddy S. Wideband electromagnetic band gap (EBG) structures, analysis and applications to antennas [Ph.D. dissertation]. Virginia Polytechnic Institute and State University; May 2015.
  • Tanabe M, Oyama M, Oishi Y, et al. A spiral antenna over a high-impedance surface consisting of fan-shaped patch cells. IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications; September 2015.
  • Tanabe M, Matsumoto M, Masuda Y. A bent-ends spiral antenna above a fan-shaped electromagnetic band-gap structure. 9th European Conference on Antennas and Propagation; May 2015.
  • Amiri MA, Balanis CA, Birtcher CR. Gain and bandwidth enhancement of spiral antenna using circularly symmetric HIS. IEEE Antennas Wireless Propag Lett. 2017;16:1080–1083. doi: 10.1109/LAWP.2016.2622222
  • Zeppettella D, Ali M. Analysis of structural effects on conformal antenna performance. IEEE Antennas and propagation Soc. Int. Symp., San Diego, CA; July 2017.
  • Llombart N, Neto A, Gerini G, et al. Planar circularly symmetric EBG structures for reducing surface waves in printed antennas. IEEE Trans. Antennas Propag. Oct. 2005;53(10):3210–3218. doi: 10.1109/TAP.2005.856365
  • Ruvio G, Ammann M, Bao X. Radial EBG cell layout for GPS patch antennas. Electron. Lett. June 2009;45(43).
  • Sarrazin J, Lepage A, Begaud X. Circular high-impedance surfaces characterization. IEEE Antennas Wireless Propagat. Lett. Feb. 2012;11:260–263. doi: 10.1109/LAWP.2012.2189349
  • Amiri MA, Balanis CA, Birtcher CR. Analysis, design, and measurements, of circularly symmetric high-impedance surfaces for loop antenna applications. IEEE Trans Antennas Propagat. Feb. 2016;64(2):618–629. doi: 10.1109/TAP.2015.2506203
  • Rahmat-Sammi Y, Yang F. Electromagnetic band gap structures in antenna engineering. Cambridge University Press; 2008. doi:10.1017/CBO9780511754531.
  • Dyson JD. The equiangular spiral antenna. IRE Trans Antennas Propagat. April 1959;AP-7(2):181–187. doi: 10.1109/TAP.1959.1144653
  • Zeppettella D, Ali M. Conformal Load-Bearing antenna structure for MIMO applications. Appl Comput Electromagn Soc J. September 2018;33(9):979–989.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.