421
Views
2
CrossRef citations to date
0
Altmetric
ARTICLES

Surface plasmon-polariton waves guided by an interface of a metal and an obliquely mounted uniaxially chiral, bianisotropic material

&
Pages 1756-1770 | Received 15 Mar 2020, Accepted 09 Jun 2020, Published online: 05 Jul 2020

References

  • Maier SA. Plasmonics: fundamentals and applications. New York (NY): Springer; 2007.
  • Homola J. Surface plasmon resonance based sensors. Heidelberg: Springer; 2006.
  • Polo JA, Mackay TG, Lakhtakia A. Electromagnetic surface waves: a modern perspective. Waltham (MA): Elsevier; 2013.
  • Naheed M, Faryad M, Mackay TG. Electromagnetic surface waves guided by the planar interface of isotropic chiral materials. J Opt Soc Am B. 2019;36:F1–F8. doi: 10.1364/JOSAB.36.0000F1
  • Zhou C, Mackay TG, Lakhtakia A. Surface-plasmon-polariton wave propagation supported by anisotropic materials: multiple modes and mixed exponential and linear localization characteristics. Phys Rev A. 2019;100:033809.
  • Rasheed M, Faryad M. Rigorous formulation of surface plasmon-polariton waves propagation along the direction of periodicity of one-dimensional photonic crystal. J Opt Soc Am B. 2018;35:2957–2962. Erratum: 2019;36:1396. doi: 10.1364/JOSAB.35.002957
  • Polo JA, Lakhtakia A. On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film. Proc R Soc A. 2009;465:87–107. doi: 10.1098/rspa.2008.0211
  • Faryad M, Polo JA, Lakhtakia A. Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. part IV: canonical problem. J Nanophoton. 2010;4:043505.
  • Abbas F, Naqvi QA, Faryad M. Multiple surface plasmon-polariton waves guided by the interface of a metal and a periodically nonhomogeneous magnetic material. Opt Commun. 2014;332:109–113. doi: 10.1016/j.optcom.2014.07.002
  • Faryad M, Hall AS, Barber GD. et al. Excitation of multiple surface-plasmon-polariton waves guided by the periodically corrugated interface of a metal and a periodic multilayered isotropic dielectric material. J Opt Soc Am B. 2012;29:704. doi: 10.1364/JOSAB.29.000704
  • Chiadini F, Fiumara V, Scaglione A, et al. Composite surface-plasmon-polariton waves guided by a thin metal layer sandwiched between a homogeneous isotropic dielectric material and a periodically multilayered isotropic dielectric material. J Nanophoton. 2015;9:1–15. doi: 10.1117/1.JNP.9.093060
  • Abbas F, Faryad M. A highly sensitive multiplasmonic sensor using hyperbolic chiral sculptured thin films. J Appl Phys. 2017;122:173104. doi: 10.1063/1.5010164
  • Lakhtakia A, Varadan VK, Varadan VV. Time-harmonic electromagnetic fields in chiral media. Berlin: Springer; 1989.
  • Monzon JC. Radiation and scattering in homogeneous general biisotropic regions. IEEE Trans Antennas Propagat. 1990;38:227–235. doi: 10.1109/8.45125
  • Sihvola AH, Lindell IV. Bi-isotropic constitutive relations. Microw Opt Tech Lett. 1991;4:295–297. doi: 10.1002/mop.4650040805
  • Lakhtakia A. Beltrami fields in Chiral media. Singapore: World Scientific; 1994.
  • Lakhtakia A. Axial propagation in general helicoidal bianisotropic media. Microw Opt Technol Lett. 1993;6:804–806. doi: 10.1002/mop.4650061408
  • Lindell IV, Viitanen AJ. Planewave propagation in uniaxial bianisotropic medium. Electron Lett. 1993;29:150–152. doi: 10.1049/el:19930101
  • Lindell IV, Viitanen AJ, Koivisto PK. Plane-wave propagation in a transversely bianisotropic uniaxial medium. Microw Opt Technol Lett. 1993;6:478–481. doi: 10.1002/mop.4650060808
  • Chung CY, Whites KW. Effective constitutive parameters for an artificial uniaxial bianisotropic chiral medium. J Electromagn Waves Appl. 1996;10:1363–1388. doi: 10.1163/156939396X00135
  • Whites KW, Chung CY. Composite uniaxial bianisotropic chiral materials characterization: comparison of predicted and measured scattering. J Electromagn Waves Appl. 1997;11:371–394. doi: 10.1163/156939397X00288
  • Tretyakov SA, Sochava AA. Novel uniaxial bianisotropic materials: reflection and transmission in planar structures. PIER. 1994;9:157–179.
  • Theron IP, Cloete JH. The optical activity of an artificial non-magnetic uniaxial chiral crystal at microwave frequencies. J Electromagn Waves Appl. 1996;10:539–561. doi: 10.1163/156939396X01125
  • Tinoco Jr. I, Freeman MP. The optical activity of oriented copper helices. I. Experimental. J Phys Chem. 1957;61:1196–1200. doi: 10.1021/j150555a015
  • Saadoun MMI, Engheta N. A reciprocal phase shifter using novel pseudochiral or Ω medium. Microw Opt Tech Lett. 1992;5:184–188. doi: 10.1002/mop.4650050412
  • Koivisto P. Polarization properties of plane waves in transversely bianisotropic uniaxial medium. Microw Opt Technol Lett. 1993;6:858–862. doi: 10.1002/mop.4650061511
  • Viitanen AJ, Lindell IV. Uniaxial chiral quarter-wave polarisation transformer. Electron Lett. 1993;29:1074–1075. doi: 10.1049/el:19930717
  • Lindell IV, Sihvola AH. Plane-wave reflection from uniaxial chiral interface and its application to polarization transformation. IEEE Trans Antennas Propagat. 1995;43:1397–1404. doi: 10.1109/8.475928
  • Tretyakov SA, Sochava AA. Proposed composite material for nonreflecting shields and antenna radomes. Electronics Lett. 1993;29:1048–1049. doi: 10.1049/el:19930699
  • Brewitt-Taylor CR. Modelling of helix-loaded chiral radar-absorbing layers. Prog Electromagnet Res (PIER) 1994;9:289–310.
  • Raab RE, Cloete JH. An eigenvalue theory of circular birefringence and dichroism in a non-magnetic chiral medium. J Electromagn Waves Appl. 1994;8:1073–1089. doi: 10.1163/156939394X00759
  • Faryad M. Surface plasmon-polariton waves guided by reciprocal, uniaxially chiral, bianisotropic material. Proc SPIE. 2019;11082:60–66.
  • Naheed M, Faryad M. Excitation of surface plasmon-polariton waves in the prism-coupled configurations guided by reciprocal uniaxially chiral bianisotropic material. Opt Commun. 2020;465:125611. doi: 10.1016/j.optcom.2020.125611
  • Lakhtakia A, Messier R. Sculptured thin films: nanoengineered morphology and optics. Bellingham (WA): SPIE Press; 2005.
  • Turbadar T. Complete absorption of light by thin metal films. Proc Phys Soc. 1959;73:40–44. doi: 10.1088/0370-1328/73/1/307
  • Kretschmann E, Raether H. Radiative decay of nonradiative surface plasmons excited by light. Z Naturforsch. 1968;23:2135–2136. doi: 10.1515/zna-1968-1247
  • Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z Phys A. 1968;216:398–410. doi: 10.1007/BF01391532
  • Motyka MA, Lakhtakia A. Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. J Nanophoton. 2008;2:021910. doi: 10.1117/1.3033757
  • Motyka MA, Lakhtakia A. Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. part II: arbitrary incidence. J Nanophoton. 2009;3:033502. doi: 10.1117/1.3147876

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.