302
Views
5
CrossRef citations to date
0
Altmetric
INVITED REVIEW

Generalized broad-band Effective Medium Theory of two-component metamaterials including magnetic ones: a review

ORCID Icon & ORCID Icon
Pages 1513-1549 | Received 18 Mar 2020, Accepted 19 Jun 2020, Published online: 09 Jul 2020

References

  • McPhedran RC, Shadrivov IV, Kuhlmey BT, et al. Metamaterials and metaoptics. NPG Asia Mater. 2011;3:100–108.
  • Elefteriades GV, Selvanayagam M. Transforming electromagnetics using metamaterials. IEEE Microw Mag. 2012;13(2):26–38.
  • Lapine M, Tretyakov S. Contemporary notes on metamaterials. IET Microwaves, Antennas Propag. 2007;1(1):3–11.
  • Pendry JB. Negative refraction. Contemp Phys. 2004;45(3):191–202.
  • Veselago V, Braginsky L, Shklover V, et al. Negative refractive index materials. J Comput Theor Nanosci. 2006;3(2):189–218.
  • Shalaev V. Optical negative-index metamaterials. Nat Photonics. 2007;1:41–48.
  • Katsarakis N, Koschny T, Kafesaki M, et al. Electric coupling to the magnetic resonance of split ring resonators. Appl Phys Lett. 2004;84(15):2943–2945.
  • Schurig D, Mock JJ, Justice BJ, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science. 2006;314(5801):977–980.
  • Alu A, Engheta N, Erentok A, et al. Single-negative, double-negative, and low-index metamaterials and their electromagnetic applications. IEEE Antennas Propag Mag. 2007;49(1):23–36.
  • Machac J, Protiva P, Rytir M, et al. Isotropical single negative metamaterials. Radioeng. 2008;17(3):1–7.
  • Feng T, Yu L, Guo J, et al. Highly localized mode in a pair structure made of epsilon-negative and mu-negative metamaterials. J Appl Phys. 2008;104:013107.
  • Namdar A, Feizollahi Onsoroudi R. Transmission properties of a quasiperiodic nonlinear fibonacci structure composed of epsilon-negative and mu-negative metamaterials. J Nanophotonics. 2011;5(1):051605.
  • Schwartz BT, Piestun R. A new path, ultralow-index metamaterials present new possibilities for controlling light propagation. SPIE’s Oemagazine. 2005;5:30–32.
  • Yang J-J, Huang M, Peng J-H. Directive emission obtained by mu and epsilon-near-zero metamaterials. Radioeng. 2009;18(2):124–128.
  • Kern DJ, Werner DH. The synthesis of metamaterial ferrites for RF applications using electromagnetic bandgap structures. In: Proceedings of antennas and propagation society international symposium; 2003 June 22-27. Columbus, OH, and Piscatavay, NJ; 2003. 1, p. 497–500.
  • Kern DJ, Werner DH, Lisovich M. Metaferrites: using electromagnetic bandgap structures to synthesize metamaterial ferrites. IEEE Trans Antennas Propag. 2005;53(4):1382–1389.
  • Microwave magnetic materials: from ferrites to metamaterials. CLEFS CEA. Winter 2007-2008; 56: 19-28.
  • Kadic M, Buckmann T, Schittny R, et al. Metamaterials beyond electromagnetism. Rep Progress Phys. 2013;76(12):126501.
  • Caloz C, Itoh T. Electromagnetic metamaterials: transmission line theory and microwave applications. New Jersey (NJ): Wiley-Interscience; 2006.
  • Jokanovic B, Geschke G, Beukman T, et al. Metamaterials: characteristics, design and microwave applications. SAIEE Afr Res J. 2010;101(3):82–92.
  • Marques R, Martin R, Sorolla M. Metamaterials with negative parameters. theory, design, and microwave applications. New York (NY): John Wiley; 2008.
  • Cai V, Shalaev V. Optical metamaterials. fundamentals and applications. New York (NY): Springer; 2010.
  • McLachlan DS, Priou A, Chenerie I, et al. Modeling of the permittivity of composite materials with a general effective medium equation. J Electromagnet Waves Appl. 1992;6(9):1099–1131.
  • Alexopoulos A. Effective-medium theory of surfaces and metasurfaces containing two-dimensional binary inclusions. Phys Rev E. 2010;81(4 Pt.2):046607.
  • Zhang X, Yi W. Effective medium theory for anisotropic metamaterials. Sci Rep. 2015;5: Article number: 7892.
  • Nadal E, Barros N, Glénat H, et al. Optical properties of complex plasmonic materials studied with extended effective medium theories combined with rigorous coupled wave analysis. Materials (Basel). 2018;11:351.
  • Garnett JCM. Colours in metal glasses and in metallic films. Philos Trans Royal Soc London. Series A, Containing Papers of a Mathematical or Physical Character. 1904;203:385–420. Colours in metal glasses, in metallic films, and in metallic solutions. II. ibid. 1906; 205: 237.
  • Bruggeman DAG. Berechnung Verschiedener Physi-Kalischer Konstanten von Heterogenen Substanzen. I. Di-elektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus Isotropen Substanzen. Ann Phys. 1935;416(7):636–664.
  • Milton GW. The theory of composites. Cambridge: Cambridge University Press; 2001.
  • Lewin L. The electrical constants of a material loaded with spherical particles. Proc Inst Elec Eng. 1946;94(27):65–68.
  • McPhedran RC, McKenzie DR. Electrostatic and optical resonances of arrays of cylinders. J Appl Physics. 1980;23(3):223–235.
  • Hollowey C, Kueester EF, Baker-Jarvis J, et al. A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix. IEEE Trans Antennas Propag. 2003;51(10):2596–2603.
  • Rybin O, Shulga S. An advanced microwave effective medium theory for two-component non-magnetic metamaterials: fundamentals and antenna substrate application. J Comput Electron. 2017;16(2):369–381.
  • Pendry JB, Holden AJ, Robbins DJ, et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microw Theory Tech. 1999;47(14):2075–2084.
  • Slovick B, Yu Z-G, Krishnamurthy S. Generalized effective medium theory for metamaterials. Phys Rev B. 2014;89:155118.
  • Sihvola A. Metamaterials and depolarization factors. Progress Electromagnet Res. 2005;51:65–82.
  • Moroz A. Depolarization field of spheroidal particles. J Opt Soc Am B. 2009;26:517–527.
  • Garcia N, Ponizovskaya EV, Xiao J. Zero permittivity materials: band gaps at the visible. Appl Phys Lett. 2002;80(7):1120–1122.
  • Sancho-Parramon J, Bosch S, Abdolvand A, et al. Effective medium models for metal-dielectric composites: an analysis based on the spectral density theory. Proc SPIE. 2005;5963:596320.
  • Mallet P, Guérin CA, Sentenac A. Maxwell-Garnett mixing rule in the presence of multiple scattering: derivation and accuracy. Phys Rev B. 2005;72:014205.
  • Yaremchuk IY, Fitio VM, Bulavinets TO, et al. Optical properties of nanocomposite materials based on plasmon nanoparticles. Semicond Phys Quantum Electron Optoelectron. 2018;21(2):195–199.
  • Pitarke JM, Garcia-Vidal FJ, Pendry JB. Effective electronic response of a system of metallic cylinders. Phys Rev B. 1998;57(24):15261–15266.
  • Geyer RG, Mantese J, Baker-Jarvis J. Effective medium theory for ferrite-loaded materials. NIST Technical Notes. 1994;1371:1–19.
  • Li X, Ma HR. The bergman spectrum of the effective dielectric constant in two-dimensional composite media. J Phys: Condensed Matter. 1999;11(23):L241–L246.
  • Waterman PC, Pedersen NE. Electromagnetic scattering by arrays of particles. J Appl Phys. 1986;59(8):2609–2618.
  • Nicorovici NA, McPhedran RC. Transport properties of arrays of elliptical cylinders. Phys Rev E. 1996;54(2):1945–1957.
  • Smith DR, Pendry JB, Wiltshire MCK. Metamaterials and negative refractive index. Science. 2004;305(5685):788–792.
  • Rybin O, Shulga S. Revised homogenization for two-component metamaterial with non-magnetic metallic cylindrical inclusions. Appl Phys A. 2019;125(2):125–153.
  • Landau LD, Lifshitz EM, Pitaevskii LP. Electrodynamics of continuous media. 2nd ed. Burlington: Elsevier; 2008.
  • Zouganelis G, Rybin O. Two layer magnetodielectric metamaterial with enhanced dielectric constant as a mew ferrite like material. Jpn J Appl Phys. 2006;45(44):L1175–L1178.
  • Rybin O, Zouganelis G. Enhancement of the dielectric constant in magneto-dielectric metamaterial substrates. Telecommun Radio Eng. 2009;68(9):835–840.
  • Cho WW, Zouganelis G, Ohsato H. Enhancement of internal dielectric constant of metallodielectrics made from layers of non-magnetic wires. Jpn J Appl Phys. 2006;45(3A):1694–1697.
  • Maslovski SI, Tretykov SA, Belov PA. Wire media with negative effective permittivity. Microw Opt Technol Lett. 2002;35(1):47–51.
  • Tretyakov S. Analytical modeling in applied electromagnetics. Boston, London: Artech House Publishing; 2003.
  • Simovski CR, Belov PA, Atrashchenko AV, et al. Wire metamaterials: physics and applications. Adv Mater. 2012;24(31):4229–4248.
  • Zouganelis G, Budimir D. Silicon gap-loaded microstrip slit-tetragonal resonator under IR-irradiation. Microw Opt Technol Lett. 2007;49(3):699–702.
  • Arritt BJ, Smith DR, Khraishi T. Equivalent circuit analysis of metamaterial strain-dependent effective medium parameters. J Appl Phys. 2011;109(7):073512.
  • Liu LY, Sun JB, Fu XJ, et al. Artificial magnetic properties of dielectric metamaterials in terms of effective circuit model. Progress Electromagnet Res. 2011;116:159–170.
  • Vendik IB, Vendik OG. Metamaterials and their applications in microwaves: a review. Technical Physics. 2013;58(1):1–24.
  • Cheng DK. Field and wave electromagnetics. 2nd ed. Harlow: Pearson Education Ltd; 1983.
  • Rybin SS. RLC-circuit effective medium approach for two-component non-magnetic metamaterials). Proc. of IEEE 1st Ukrainian Conference on electric and computer engineering; 2017 May 29–June 2; Kyiv (Ukraine); p. 127–131.
  • Rybin O, Shulga S, Raza M. Wide-band effective medium theory for a cubic array of metallic spherical particles. Optik (Stuttg). 2020;206:164336.
  • Deryugin IA, Sigal MA. Frequency dependence of the magnetic permeability and dielectric susceptibility of artificial dielectrics between 500 and 35,000 Mcs. Soviet Phys – Tech Phys. 1961;6(1):72–77.
  • Kodeary AK, Hamidi SM, Moradlou R. Voltage controlled properties of piezo-magneto-plasmonic core/shell nanoparticles. Nano-Structures & Nano-Objects. 2020;21:100415.
  • Rybin O. Effective microwave magnetic response of two-component metaferrite. Int J Appl Electromagnet Mech. 2012;40(3):185–193.
  • Rybin O, Shulga S, Bagatska O. Microwave effective medium theory for metamaterial with cylindrical ferric inclusions with an arbitrary cross section form. J Nano- Electron Phys. 2018;10(2):02013-1–02013-6.
  • Rybin O. Unusual microwave effective properties of two-component metaferrites. Int J Appl Electromagnet Mech. 2014;46(3):519–526.
  • Yannopapas V. Artificial magnetism and negative refractive index in three-dimensional metamaterials of spherical particles at near-infrared and visible frequencies. Appl Phys A. 2007;87(2):259–264.
  • Garsia N, Ponizovskaya EV. Low-loss left-handed materials using metallic magnetic cylinders. Phys Rev E. 2005;71(4):046611.
  • Rybin O. Effective permeability tensor of partially magnetized two-component metaferrites. Modern Phys Lett B. 2014;28(25):1450199.
  • Rybin O, Shulga S. Magnetically tuned two-component microwave metamaterial. Progress Electromagnet Resh M. 2017;56:63–70.
  • Igarashi M. Tensor permeability of partially magnetized ferrites. IEEE Trans Magn. 1977;13(5):1664–1668.
  • Schloemann E. Theory of low-field loss in partially magnetized ferrites. IEEE Trans Magn. 1992;28(5):3300–3302.
  • Pozar DM. Microwave engineering. 4th ed. Hoboken (NJ): John Wiley; 2012.
  • Rybin O, Yemelyanov K, Pitafi AI, et al. Effective longitudinal magnetic response of magnetic metamaterial in the GHz frequencies. Multidiscipline Model Mater Struct. 2011;7(3):318–328.
  • Geyer RG, Mantese J, Baker-Jarvis J. Effective medium theory for ferrite-loaded materials. NIST Technical Note 1371; 1994.
  • Chang DDL. Composite materials. Science and applications. 2-nd ed. London: Springer-Verlag; 2010.
  • Khizhniak NA. Integral equations of macroscopic electrodynamics (in Russian). Kiev: Naukova Dumka; 1986.
  • Balanis CA. Antenna theory: analysis and design. 3rd ed. Hoboken (NJ): John Wiley; 2005.
  • Mosallaei H, Sarabandi K. Magneto-dielectrics in electromagnetics: concept and applications. IEEE Trans Antennas Propag. 2004;52(6):1558–1567.
  • Mongia RK, Ittipiboon A, Cuhaci M. Low profile dielectric resonator antennas using a very high permittivity material. Electron Lett. 1994;30(17):1362–1363.
  • Colburn JS, Rahmat-Samii Y. Patch antennas externally perforated high dielectric constant substrates. IEEE Trans Antennas Propag. 1999;47(12):1785–1794.
  • Buell K, Mosallaei H, Sarabandi K. Substrate for small patch antennas providing tunable miniaturization factors. IEEE Trans Microw Theory Tech. 2006;54(1):135–146.
  • Hansen RC, Burke M. Antennas with magneto-dielectrics. Microw Opt Technol Lett. 2000;26(2):75–78.
  • Rybin O. Microwave miniaturization concept for narrow band rectangular patch antenna structures. Int J Appl Electromagnet Mech. 2015;48(1):69–75.
  • Rybin O, Shulga S. Utilization of double metal-dielectric composite substrates for microwave miniaturization of rectangular patch antennas. J Comput Electron. 2016;15(3):1023–1027.
  • Wan J, Rybin O, Shulga S. Far field focusing for a microwave patch antenna with composite substrate. Results in Physics. 2018;8:971–976.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.