3,796
Views
5
CrossRef citations to date
0
Altmetric
INVITED REVIEW

Electromagnetic analysis and simulation aspects of wireless power transfer in the domain of inductive power transmission technology

Pages 1719-1755 | Received 11 Feb 2020, Accepted 17 Jul 2020, Published online: 30 Jul 2020

References

  • Rim CT, Mi C. Wireless power transfer for electric vehicles and mobile devices. New York: John Wiley & Sons, Ltd; 2017.
  • Valtchev S, Borges B, Brandisky K, et al. Resonant contactless energy transfer with improved efficiency. IEEE Trans Power Electron. 2009;24(3):685–699.
  • Wang CS, Stielau OH, Covic GA. Design consideration for a contactless electric vehicle battery charger. IEEE Trans Ind Electron. 2005;52(5):1308–1313.
  • Sallán J, Villa JL, Llombart A, et al. Optimal design of ICPT systems applied to electric vehicle battery charge. IEEE Trans Ind Electron. 2009;56(6):2140–2149.
  • Wang CS, Covic GA, Stielau OH. Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer system. IEEE Trans Ind Electron. 2004;51(1):148–157.
  • Cirimele V. Design and integration of a dynamic IPT system for automotive applications. PhD dissertation, Politecnico di Torino and University Paris-Saclay; 2017.
  • Cirimele V, Diana M, Freschi F, et al. Inductive power transfer for automotive applications: state-of-the-art and future trends. IEEE Trans Ind Appl. 2018;54(5):4069–4079.
  • Ahmad A, Saad Alam M, Chabaan R. A comprehensive review of wireless charging technologies for electric vehicles. IEEE Trans Transport Elect. 2018;4(1):38–63.
  • Fuad Abdul Aziz A, Fakhizan Romlie M, Baharudin Z. Review of inductively coupled power transfer for electric vehicle charging. IET Power Electron. 2019;12(14):3611–3623.
  • Brown WC. The history of power transmission by radio waves. IEEE Trans Microw Theory Tech. 1984;32(9):1230–1242.
  • Tesla N. Apparatus for transmission of electrical energy, May 15 1900. US Patent 649,621.
  • George Iljitch Babat, High frequency electric transport system with contactless transmission of energy, September 1951. Application number GB926946A.
  • Otto DV. Power supply equipment for electrically-driven vehicle, June 19 1974. JP Patent 49 063 111.
  • Shladover SE, et al. Path at 20-history and major milestones. IEEE Trans Intell Transp Syst. 2007;8(4):584–592.
  • Boys J, Green A. Inductive power pick-up coils, WO Patent App. PCT/NZ1994/000,115, Apr. 27, 1995. [Online]. Available from: https://www.google.com/patents/WO1995011545A1?cl=en.
  • Boys JT, Green AW. Flux concentrator for an inductive power transfer system, US Patent 5,821,638, Oct. 13, 1998. [Online]. Available from: https://www.google.com/patents/US5821638.
  • WAVE website. [cited 2020 Jan]. Available from: https://www.waveipt.com/.
  • [Cited 2020 Jan]. Available from: https://www.bombardier.com/fr/media/newsList/details.bt_20150901_-berlin-erste-hauptstadt-mit-kabellos-geladener-e-bu.bombardiercom.html.
  • Suh I. Application of shaped magnetic field in resonance (SMFIR) technology to future urban transportation, in CIRP design conference, 2011.
  • Ahn S, Kim J. Magnetic field design for high efficient and low EMF wireless power transfer in on-line electric vehicle. Antennas and Propagation (EUCAP), Proceedings of the 5th European conference; 2011, p. 3979–3982.
  • Huh J, Lee SW, Lee WY, et al. Narrow-width inductive power transfer system for online electrical vehicles. Power Electron IEEE Trans. 2011;26(12):3666–3679.
  • Carlson RW, Normann B. Test results of the plugless inductive charging system from evatran group, Inc. SAE Int J Alt Powertrains. 2014;3:64–71.
  • Budhia M, Covic GA, Boys JT. Design and optimization of circular magnetic structures for lumped inductive power transfer systems. IEEE Trans Power Electron. 2011;26(11):3096–3108.
  • Budhia M, Boys JT, Covic GA, et al. Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems. IEEE Trans Ind Electron. 2013;60(1):318–328.
  • Valtchev S, Borges B, Brandisky K, et al. Resonant contactless energy transfer with improved efficiency. IEEE Trans on Power Electron. 2009;24(3):685–699.
  • Mohammad M, Tezera Wodajo E, Choi S, et al. Modeling and design of passive shield to limit EMF emission and to minimize shield loss in unipolar wireless charging system for EV. IEEE Trans Power Electron. 2019;34(12):12235–12245.
  • ICNIRP. Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz). Health Phys. 1998;74:494–522.
  • ICNIRP. ICNIRP statement V guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). Health Phys. 2010;99:818–836.
  • IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. International committee on electromagnetic safety, the institute of electrical and electronics engineers, Inc. 3 Park Avenue, IEEE C95.1, IEEE Standards Dept., New York (NY); 2005.
  • Kumar Kushwaha B, Rituraj G, Kumar P. 3-D analytical model for computation of mutual inductance for different misalignments With shielding in wireless power transfer system. IEEE Trans Transport Elect. 2017;3(2):332–342.
  • Dashora HK, Buja G, Bertoluzzo M, et al. Analysis and design of DD coupler for dynamic wireless charging of electric vehicles. J Electromagn Wave Appl. 2018;32(22):170–189.
  • Wang S, Dorrell DG. Loss analysis of circular wireless EV charging coupler. IEEE Trans Magn. 2014;50(11). article 8402104.
  • Marques EG, Mendes AMS. Comparison of magnetic coupling structures for IPT systems. COMPEL – Int J Comput Math Electr Electron Eng. 2015;34(2):514–530.
  • Kim M, Byun J, Lee BK. Performance analysis of magnetic power pads for inductive power transfer systems with ferrite structure variation. J Electr Eng Technol. 2017;12(3):1211–1218.
  • Kim M, Joo D-M, Lee BK. Design and control of inductive power transfer system for electric vehicles considering wide variation of output voltage and coupling Coefficient. IEEE Trans Power Electron. 2019;34(2):1197–1218.
  • Wei XC, Li EP. Simulation and experimental comparison of different coupling mechanisms for the wireless electricity transfer. J Electromagn Waves Appl. 2009;23:925–934.
  • Shia X, Qia C, Qua M, et al. Effects of coil shapes on wireless power transfer via magnetic resonance coupling. J Electromagn Wave Appl. 2014;28(11):1316–1324.
  • Naik Mudea K, Bertoluzzoa M, Bujaa G, et al. Design and experimentation of two-coil coupling for electric city-car WPT charging. J Electromagn Wave Appl. 2016;30(1):70–88.
  • Ibrahim M, Bernard L, Pichon L, et al. Electromagnetic model of EV wireless charging systems in view of energy transfer and radiated field control. Int J Appl Electromagn Mech. 2014;46(2):355–360.
  • Ibrahim M, Pichon L, Bernard L, et al. Advanced modeling of a 2-kW series-series resonating inductive charger for real electric vehicle. IEEE Trans Vehi Technol. Feb 2015;64:421–430.
  • Zaheer A, Hao H, Covic GA, et al. Investigation of multiple decoupled coil primary pad topologies in lumped IPT systems for interoperable electric vehicle charging. IEEE Trans Power Electron. 2015;30(4):1937–1955.
  • Zhang W, White JC, Abraham AM, et al. Loosely coupled Transformer structure and interoperability study for EV wireless charging systems. IEEE Trans Power Electron. 2015;30(11):6356–6367.
  • Ahmad A, Alam MS, Mohamed AAS. Design and interoperability analysis of Quadruple Pad structure for electric vehicle wireless charging application. IEEE Trans Transport Elect. 2019;5(4):934–945.
  • Ibrahim M, Bernard L, Pichon L, et al. Inductive charger for electric vehicle: advanced modeling and interoperability analysis. IEEE Trans Power Elect. 2016;31(12):8094–8114.
  • Nadakuduti J, Douglas M, Lu L, et al. Compliance demonstration of wireless power charging systems with respect to human safety limits. IEEE Trans Electromagn Compat. 2015;30(11):6264–6273. DOI:10.1109/TPEL.2015.2400455.
  • Laakso I, Tsuchida S, Hirata A, et al. Evaluation of SAR in a human body model due to wireless power transmission in the 10 MHz band. Phys Med Biol. 2012;57(15):4991–5002.
  • Christ A, Douglas MG, Roman J, et al. Evaluation of wireless resonant power transfer systems with human electromagnetic exposure limits. IEEE Trans Electromagn Compat. 2013;55(2):265–274.
  • Gabriel C, Gabriel S, Corthout E. The dielectric properties of biological tissues: I. literature survey. Phys Med Biol. 1996;41:2231–2249.
  • Durney CH, Iskander MF, Massoudi H, et al. An empirical formula for broad-band SAR calculations of prolate spheroidal models of humans and animals. IEEE Trans Microw Theory Tech. 1979;27(8):758–763.
  • Christ A, Kainz W, Hahn EG, et al. The Virtual FamilyVDevelopment of surface based anatomical models of two adults and two children for dosimetric simulations. Phys Med Biol. 2010;55(2):23–38.
  • Caon M. Voxel-based computational models of real human anatomy: a review. Radiation Environ Biophys. 2004;42(4):229–235.
  • Nagaoka T, Watanabe S, Sakurai K, et al. Development of realistic high-resolution whole-body voxel models of Japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic-field dosimetry. Phys Med Biol. 2004;49(1):1–15.
  • Zaidi H, Xu XG. Computational anthropomorphic models of the human anatomy: the path to realistic Monte Carlo modeling in radiological sciences. Annu Rev Biomed Eng. 2007;9:471–500.
  • Zaidi H, Tsui B. Review of computational anthropomorphic anatomical and physiological models. Proc IEEE. 2009;97(12):1938–1953.
  • IT’IS Foundation, the virtual population, Zurich, Switzerland; 2012. [Online]. Available from: https://www.itis.ethz.ch/services/ anatomical-models/overview/.
  • Cherubini E, Chavannes N, Kuster N. Anatomical-based deformation of 3-D CAD high-resolution human models for complex electromagnetic simulations. Presented at the Joint Meeting Bioelectromagnetics Society/Europe Bioelectromagnetics Association, Davos (Switzerland); June 2009.
  • Cvetkovic M, Poljak D. Electromagnetic-thermal dosimetry comparison of the homogeneous adult and child brain models based on the SIE approach. J Electromagn Wave Appl. 2015;29(17):2365–2379.
  • Wu T, Tan L, Shao Q, et al. Chinese adult anatomical models and the application in evaluation of wideband RF EMF exposure. Phys Med Biol. 2011;56:2075–2089.
  • Dahdouh S, Varsier N, Serrurier A, et al. A comprehensive tool for image-based generation of fetus and pregnant women mesh models for numerical dosimetry studies. Phys Med Biol. 2014;59(16):4583–4602.
  • Yee KS. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag. 1966;14(3):585–589.
  • Hadjem A, Lautru D, Dale C, et al. Study of specific absorption rate (SAR) induced in two child head models and in adult heads using mobile phones. IEEE Trans Microw Theory Tech. 2005;53(1):4–11.
  • Chiaramello E, Parazzini M, Fiocchi S, et al. Stochastic dosimetry based on low rank tensor approximations for the assessment of children exposure to WLAN source. IEEE J Electromagn RF Microwave Med Biol. 2018;2(2):131.
  • Cimala C, Clemens M, Streckert J, et al. Simulation of inductive power transfer systems exposing a human body with a coupled scaled-frequency approach. IEEE Trans Magn. 2017;53(6), paper 7201804.
  • Bakker J, Paulides M, Neufeld E, et al. Children and adults exposed to low-frequency magnetic fields at the ICNIRP reference levels: theoretical assessment of the induced electric fields. Phys Med Biol. 2012;57(7):1815–1829.
  • Christ A, Guldimann R, Bühlmann B, et al. Exposure of the human body to professional and domestic induction cooktops compared to the basic restrictions. Bioelectromagnetics. 2012;8:695–705.
  • Chen XL, Umenei AE, Baarman DW, et al. Human exposure to close-range resonant wireless power transfer systems as a function of design parameters. IEEE Transa Electromagn Compat. 2014;56(5):1027–1034.
  • Iwamoto T, Arima T, Uno T, et al. Measurement of electromagnetic field in the vicinity of wireless power transfer system for evaluation of human-body exposure, EMC, Tokyo; 2014.
  • Yavolovskaya E, Chiqovani G, Gabriadze G, et al. Simulation of human exposure to electromagnetic fields of inductive wireless power transfer systems in the frequency range from 1 Hz to 30 MHz. Proceeding of the 2016 international symposium on electromagnetic compatibility – EMC EUROPE 2016, Wroclaw (Poland), September 5–9, 2016.
  • Chakarothai J, Wake K, Arima T, et al. Exposure evaluation of an actual wireless power transfer system for an electric vehicle with near-field measurement. IEEE Trans Microw Theory Tech. 2018;66(3):1543–1552.
  • Park S. Evaluation of electromagnetic exposure during 85 kHz wireless power transfer for electric vehicles. IEEE Trans Magnet. 2018;53(1). paper 5100208.
  • Wang Q, Li W, Kang J, et al. Electromagnetic safety evaluation and protection methods for a wireless charging system in an electric vehicle. IEEE Trans Electromagn Compat. 2019;61(6):1913–1925.
  • Li JC, Huang X, Chen C, et al. Effect of metal shielding on a wireless power transfer system. AIP Adv. 2017;7(5). Art. no. 056675.
  • Kim J, et al. Coil design and shielding methods for a magnetic resonant wireless power transfer system. Proc IEEE. 2013;101(6):1332–1342.
  • Kim H, Cho J, Ahn S, et al. Suppression of leakage magnetic field from a wireless power transfer system using ferromagnetic material and metallic shielding. Proceeding IEEE international symposium on electromagnetic compatibility, Pittsburgh (PA); Aug. 2012, p. 640–645.
  • Hiles ML, Olsen RG, Holte KC, et al. Power frequency magnetic field management using a combination of active and passive shielding technology. IEEE Trans Power Del. 1998;13(1):171–179.
  • Kim SM, Moon JI, Cho IK, et al. Advanced power control scheme in wireless power transmission for human protection from EM field. IEEE Trans Microw Theory Techn. 2015;63(3):847–856.
  • Campi T, Cruciani S, Maradei F, et al. Near field reduction in a wireless power transfer system using LCC compensation. IEEE Trans Electromag Compat. 2017;59(2):686–694.
  • Campi T, Cruciani S, Feliziani M. Numerical characterization of the magnetic field in electric vehicles equipped with a WPT system. Wireless Power Transfer. 2017;4:78–87.
  • Campi T, Cruciani S, Feliziani M. Wireless power transfer (WPT) system for an electric vehicle (EV): How to shield the car from the magnetic field generated by two planar coils. Wireless Power Transfer. 2017;5:1–8.
  • Lee S, Kim D-H, Cho Y, et al. Low leakage electromagnetic field level and high efficiency using a novel hybrid loop-array design for wireless high power transfer system. IEEE Trans Ind Electron. 2019;66(6):4356–4367.
  • Ding P, Pichon L, Bernard L, et al. Electromagnetic fields in human body by wireless inductive system. COMPEL: Int J Comput Math Elect Electron Eng. 2015;34(2):590–595.
  • Jokela K. Restricting exposure to pulsed and broadband magnetic fields. Health Phys. 2000;79(4):373–388.
  • Cirimele V, Fabio F, Luca G, et al. Human exposure assessment in dynamic inductive power transfer for automotive applications. IEEE Transactions on Magnetics. Inst Elect Electron Eng. 2017;53(6):5000304.
  • Kroese D, Taimre T, Botev Z. Handbook of Monte Carlo methods. New York: Wiley Series in Probability and Statistics; 2011.
  • Koziel S, Bekasiewicz A. Low-cost surrogate-assisted statistical analysis of miniaturized microstrip couplers. J Electromagn Wave Appl. 2016;30(10):1345–1353.
  • Lefebvre J, Roussel H, Walter E, et al. Prediction from wrong models: the Kriging approach. IEEE Antennas Propag Mag. 1996;38(4):35–45.
  • Voyer D, Musy F, Nicolas L, et al. Probabilistic methods applied to 2D electromagnetic numerical dosimetry. COMPEL. 2008;27(3):651–667.
  • Silly-Carette J, Lautru D, Wong M-F, et al. Variability on the propagation of a plane wave using stochastic collocation methods in a bio electromagnetic application. IEEE Microwave Wireless Comp Lett. 2009;19(4):185–187.
  • Kersaudy P, Sudret B, Varsier N, et al. A new surrogate modeling technique combining Kriging and polynomial chaos expansions–application to uncertainty analysis in computational dosimetry. J Comput Phys. 2015;286:103–117.
  • Liorni I, Parazzini M, Fiocchi S, et al. Study of the influence of the orientation of a 50-Hz magnetic field on fetal exposure using polynomial chaos decomposition. Int J Environ Res Public Health. 2015;12:5934–5953.
  • Bilicz S, Gyimóthy S, Pávó J, et al. 2016. Uncertainty quantification of wireless power transfer systems. 2016 IEEE Wireless Power Transfer Conference (WPTC), Aveiro, 2016, pp. 1–3. DOI:10.1109/WPT.2016.7498861.
  • Knaisch K, Gratzfeld P. Gaussian process surrogate model for the design of circular, planar coils used in inductive power transfer for electric vehicles. IET Power Electron. 2016;9(15):2786–2794.
  • Lagouanelle P, Krauth V-L, Pichon L. uncertainty quantification in the assessment of human exposure near wireless power transfer systems in automotive applications, automotive, Turin (Italy); 2019.
  • Sudret B. Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Safe. 2008;93(7):964–979.
  • Blatman G, Sudret B. Adaptive sparse polynomial chaos expansion based on least angle regression. J Comput Phys. 2011;230(6):2345–2367.
  • Sobol IM. Sensitivity estimates for nonlinear mathematical models. Mathe Model Comput Exper. 1993;1(4):407–414.
  • Larbi M, Stievano IS, Canavero FG, et al. Variability impact of many design parameters: the case of a realistic electronic link. IEEE Trans Electromagn Compat. 2018;60(1):34–41.
  • Lagouanelle P, Krauth V-L, Pichon L. Uncertainty quantification in the assessment of human exposure near wireless power transfer systems in automotive applications, automotive, Turin (Italy); 2019.
  • Gori P-A, Sadarnac D, Caillierez A, et al. Sensorless inductive power transfer system for electric vehicles: strategy and control for automatic dynamic operation, 2017 19th European conference on power electronics and applications (EPE’17 ECCE Europe), Warsaw (Poland).
  • Zucca M, Bottauscio O, Harmon S, et al. Metrology for inductive charging of electric vehicles (MICEV). Proceeding international conference of electrical and electronic technologies for automotive, Turin (Italy), July 2019.
  • MICEV, MICEV project homepage. [Online]. [cited Jan 2020]. Available from: https://www.micev.eu/.
  • S. Marelli, and B. Sudret, UQLab: a framework for uncertainty quantification in Matlab. Proceeding 2nd international conference on vulnerability, risk analysis and management (ICVRAM2014), Liverpool (UK); 2014, p. 2554–2563.
  • Lagouanelle P, Bottauscio O, Pichon L, et al. Impact of parameters variability on the level of human exposure due to inductive power transfer. IEEE CEFC 2020 (Biennal of Electromagnetic Field Computation), Pisa (Italy), November 2020.
  • Mohamed AAS, An S, Mohammed O. Coil design optimization of power pad in IPT system for electric vehicle applications. IEEE Trans Magn. 2018;54(4). Article no. 9300405.
  • Otomo Y, Igarashi H. A 3-D topology optimization of magnetic cores for wireless power transfer device. IEEE Trans Magn. 2019;55(6). Article no. 8103005.
  • Lu M, Ngo KDT. A fast method to optimize efficiency and stray magnetic field for inductive-power-transfer coils using lumped-loops model. IEEE Transa Power Electronic. 2019;33(4):3065–3075.
  • Cruciani S, Campi T, Maradei F, et al. Active shielding design for wireless power transfer systems. IEEE Trans Electromagn Compat. 2019;61(6):1953–1960.
  • Fabric EU project final event & demonstration video. [Online]. [cited Jan 2020]. Available from: https://www.youtube.com/watch?v=ngrJ60o06f8.