84
Views
2
CrossRef citations to date
0
Altmetric
ARTICLES

Study of electrostatic field effect in a three-phase gas-insulated busduct with FGM spacer under the effect of protrusion

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2107-2129 | Received 14 May 2020, Accepted 07 Aug 2020, Published online: 18 Aug 2020

References

  • Cookson AH. Review of high voltage gas breakdown and insulators in compressed gases. IEEE Proc Phys Sci Meas Instrum Manage Educ. 1981;128(4):303–312.
  • Istad M, Runde M. Thirty-six years of service experience with a national population of gas-insulated substations. IEEE Trans Power Delivery. 2010;25(4):2448–2454. doi: 10.1109/TPWRD.2010.2050705
  • Talaat M, El-Zein A, Amin M. Developed optimization technique used for the distribution of U-shaped permittivity for cone type spacer in GIS. Electric Power Syst Res. 2018;163:754–766. doi: 10.1016/j.epsr.2017.07.002
  • Asano K, Yatsuzuka K, Higashiyama Y. The motion of charged metal particles within parallel and tilted electrodes. J Electrostat. 1993;30(C):65–74. doi: 10.1016/0304-3886(93)90063-D
  • Jones JE. On extremum principles for gaseous ionic movements with varying mobility coefficients. J Electrostat. 2003;59(1):43–56. doi: 10.1016/S0304-3886(03)00084-6
  • Cronin JC, Perry ER. Optimization of insulators for gas insulated systems. IEEE Trans Power Apparatus Syst. 1973;PAS-92(2):558–564. doi: 10.1109/TPAS.1973.293757
  • Tsuboi H, Misaki T. ‘Optimization of electrode and insulator contours by using Newton method’. IEEE Trans. Japan. 1986;106A:307–314.
  • Kurimoto M, Kato K, Hanai M, et al. Application of functionally graded material for reducing electric field on electrode and spacer interface. IEEE Trans Dielectr Electr Insul. 2010;17(1):256–263. doi: 10.1109/TDEI.2010.5412025
  • Hayakawa N, Ishiguro J, Kojima H, et al. Fabrication and simulation of permittivity graded materials for electric field grading of gas insulated power apparatus. IEEE Trans Dielectr Electr Insul. 2016;23(1):547–554. doi: 10.1109/TDEI.2015.005237
  • Du BX, Liang HC, Li J, et al. Temperature-dependent surface potential decay and flashover characteristics of epoxy/SiC composites. IEEE Trans Dielectr Electr Insul. 2018;25(2):631–638. doi: 10.1109/TDEI.2017.006872
  • Ran Z, Du B. Electric field regulation of insulator interface by FGM with conductivity for superconducting-GIL. IEEE Trans Appl Supercond. 2019;29(2):1–5. doi: 10.1109/TASC.2019.2895153
  • Hayakawa N, Shimomura J, Nakano T, et al. Fabrication technique of permittivity graded materials (FGM) for disk-type solid insulator. 2012 Annual Report Conference on Electrical Insulation and Dielectric Phenomena; 14–17 Oct. 2012.
  • Okubo H, Shimomura J, Fujii Y, et al. Fabrication and simulation techniques of permittivity graded materials for gas insulated power equipment. Proceedings of the 21st International Symposium on High Voltage Engineering; 2011. p. E-095.
  • Matsuoka N, Fuchi Y, Kozako M, et al. Effect of permittivity variation on surface flashover of GIS epoxy spacer model in SF6 gas. IEEE Int Conf Dielectr. 2016;1:96–99. doi:10.1109/ICD.2016.7547552.
  • Ju H-J, Kim B, Ko K-C. Optimal design of an elliptically graded permittivity spacer configuration in gas insulated switchgear. IEEE Trans Dielectr Electr Insul. 2011;18(4):1268–1273. doi: 10.1109/TDEI.2011.5976126
  • Jun T. Development and application of functionally gradient materials. Int Conf Ind Control Electron Eng. 2012: 1022–1025. doi:10.1109/ICICEE.2012.271
  • Metwally IA. Reduction of electric-field intensification inside GIS by controlling spacer material and design. J Electrostat. 2012;70(2):217–224. doi: 10.1016/j.elstat.2012.01.004
  • Yao R, Hui M, Li J, et al. A new discharge pattern for the characterization and identification of insulation defects in GIS. Energies. 2018;11(971):1–18.
  • Wang H, Peng Z, Guo Z, et al. Simulation study of electric influence caused by defects on UHV AC GIS spacer. IEEE 11th international conference on the properties and Applications of Dielectric Materials; 2015. p. 676–679.
  • Nagesh Kumar GV, Amarnath J, Singh BP, et al. Electric field effect on metallic particle contamination in a common enclosure gas insulated busduct. IEEE Trans Dielectr Electr Insul. 2007;14(2):334–340. doi: 10.1109/TDEI.2007.344611
  • Koch H. GIL Gas-insulated transmission lines. 1st ed. Hoboken (NJ): Wiley/IEEE; 2012. p. 1–49.
  • Radwan RM, Abou-elyazied AM. Effect of spacer's defects and conducting particles on the electric field distribution along their surfaces in GIS. IEEE Trans Dielectr Electr Insul. December 2007;14(6):1484–1491. doi: 10.1109/TDEI.2007.4401232
  • Li C, Lin C, Yang Y, et al. Novel HVDC spacers by adaptively controlling surface charges – part II: experiment. IEEE Trans Dielectr Electr Insul. August 2018;25(4):1248–1258. doi: 10.1109/TDEI.2018.007056
  • Tu Y, Chen G, Li C, et al. ±100-kV HVDC SF6/N2 gas-insulated transmission line. IEEE Trans Power Delivery. April 2020;35(2):735–744. doi: 10.1109/TPWRD.2019.2925519
  • Li C, Hu J, Lin C, et al. The potentially neglected culprit of DC surface flashover: electron migration under temperature gradients. Sci Rep. 2017;7:3271. doi: 10.1038/s41598-017-03657-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.