70
Views
1
CrossRef citations to date
0
Altmetric
Articles

Two-stage sparse representation of NSCT features with application to SAR target classification

, &
Pages 2371-2384 | Received 16 May 2020, Accepted 19 Aug 2020, Published online: 09 Sep 2020

References

  • Novak LM, Owirka GJ, Brower WS, et al. The automatic target recognition system in SAIP. Lincoln Lab J. 1997;10(2):187–202.
  • El-Darymli K, Eric WG, McGuire P, et al. Automatic target recognition in synthetic aperture radar imagery: a state-of-the-art review. IEEE Access. 2016;4:6014–6058. doi: 10.1109/ACCESS.2016.2611492
  • Ding B, Wen G, Ma C, et al. Target recognition in synthetic aperture radar images using binary morphological operations. J Appl Remote Sens. 2016;10(4):046006. doi: 10.1117/1.JRS.10.046006
  • Cui S, Miao F, Jin Z, et al. Target recognition of synthetic aperture radar images based on matching and similarity evaluation between binary regions. IEEE Access. 2019;7:154398–154413. doi: 10.1109/ACCESS.2019.2948839
  • Amoon M, Rezai-rad G. Automatic target recognition of synthetic aperture radar (SAR) images based on optimal selection of Zernike moment features. IET Comput Vis. 2014;8(2):77–85. doi: 10.1049/iet-cvi.2013.0027
  • Jin L, Chen J, Peng X. Synthetic aperture radar target classification via joint sparse representation of multi-level dominant scattering images. Optik (Stuttg). 2019;186:110–119. doi: 10.1016/j.ijleo.2019.04.014
  • Shan C, Huang B, Li M. Binary morphological filtering of dominant scattering area residues for SAR target recognition. Comput Intell Neurosci. 2018;2018:9680465. doi: 10.1155/2018/9680465
  • Papson S, Narayanan R. Classification via the shadow region in SAR imagery. IEEE Trans Aerosp Electron Syst. 2012;48(2):969–980. doi: 10.1109/TAES.2012.6178042
  • Chang M, You X. Target recognition in SAR images based on information-decoupled representation. Remote Sens (Basel). 2018;10:138. doi: 10.3390/rs10010138
  • Anagnostopoulos GC. SVM-based target recognition from synthetic aperture radar images using target region outline descriptors. Nonlinear Anal. 2009;71(2):e2934–e2939. doi: 10.1016/j.na.2009.07.030
  • Tan J, Fan X, Wang S, et al. Target recognition of SAR images by partially matching of target outlines. J Electromagn Waves Appl. 2019;33(7):865–881. doi: 10.1080/09205071.2018.1495580
  • Zhu X, Huang Z, Zhang Z. Automatic target recognition of synthetic aperture radar images via Gaussian mixture modeling of target outlines. Optik (Stuttg). 2019;194:162922. doi: 10.1016/j.ijleo.2019.06.022
  • Mishra A. K. Validation of PCA and LDA for SAR ATR. Proc. IEEE TENCON, Hyderabad, India. 2008.
  • Cui Z, Cao Z, Yang J, et al. Target recognition in synthetic aperture radar via non-negative matrix factorisation. IET Radar Sonar Navig. 2015;9(9):1376–1385. doi: 10.1049/iet-rsn.2014.0407
  • Yu M, Dong G, Fan H, et al. SAR target recognition via local sparse representation of multi-manifold regularized low-rank approximation. Remote Sens. 2018;10:211. doi: 10.3390/rs10020211
  • Huang Y, Pei J, Yang J, et al. Neighborhood geometric center scaling embedding for SAR ATR. IEEE Trans Aerosp Electron Syst. 2014;50(1):180–192. doi: 10.1109/TAES.2013.110769
  • Xiong W, Cao L, Hao Z, et al. Combining wavelet invariant moments and relevance vector machine for SAR target recognition. Proceedings of IET International Radar Conference, Guilin, China; 2009, p. 1–4.
  • Dong G, Kuang G, Wang N, et al. SAR target recognition via joint sparse representation of monogenic signal. IEEE J Sel Topics Appl Earth Observ Remote Sen. 2015;8(7):3316–3328. doi: 10.1109/JSTARS.2015.2436694
  • Zhou Y, Chen Y, Gao R, et al. SAR target recognition via joint sparse representation of monogenic components with 2D canonical correlation analysis. IEEE Access. 2019;7:25815–25826.
  • Chang M, You X, Cao Z. Bidimensional empirical mode decomposition for SAR image feature extraction with application to target recognition. IEEE Access. 2019;7:135720–135731. doi: 10.1109/ACCESS.2019.2941397
  • Potter LC, Mose RL. Attributed scattering centers for SAR ATR. IEEE Tran Image Process. 1997;6(1):79–91. doi: 10.1109/83.552098
  • Ding B, Wen G, Zhong J, et al. A robust similarity measure for attributed scattering center sets with application to SAR ATR. Neurocomputing. 2017;219:130–143. doi: 10.1016/j.neucom.2016.09.007
  • Ding B, Wen G, Huang X, et al. Target recognition in synthetic aperture radar images via matching of attributed scattering centers. IEEE J Sel Topics Appl Earth Observ Remote Sen. 2017;10(7):3334–3347. doi: 10.1109/JSTARS.2017.2671919
  • Zhang X. Noise-robust target recognition of SAR images based on attribute scattering center matching. Remote Sens Lett. 2019;10(2):186–194. doi: 10.1080/2150704X.2018.1538580
  • Lv J, Liu Y. Data augmentation based on attributed scattering centers to train robust CNN for SAR ATR. IEEE Access. 2019;7:25459–25473. doi: 10.1109/ACCESS.2019.2900522
  • Zhao Q, Principe J. Support vector machines for synthetic aperture radar automatic target recognition. IEEE Trans Aerosp Electron Syst. 2001;37(2):643–654. doi: 10.1109/7.937475
  • Liu H, Li S. Decision fusion of sparse representation and support vector machine for SAR image target recognition. Neurocomputing. 2013;113:97–104. doi: 10.1016/j.neucom.2013.01.033
  • Sun Y, Liu Z, Todorovic S, et al. Adaptive boosting for SAR automatic target recognition. IEEE Trans Aerosp Electron Syst. 2006;43(1):112–125. doi: 10.1109/TAES.2007.357120
  • Thiagaraianm JJ, Ramamurthy KN, Knee P, et al. Sparse representations for automatic target classification in SAR images. In Proceedings of 4th International Symposium Communication Control Signal Process, Limassol, Cyprus; 2010. p. 1–4.
  • Song H, Ji K, Zhang Y, et al. Sparse representation-based SAR image target classification on the 10-class MSTAR data set. Appl Sci. 2016;6:26. doi: 10.3390/app6010026
  • Zhang X, Wang Y, Tan Z, et al. Two-stage multi-task representation learning for synthetic aperture radar (SAR) target images classification. Sensors. 2017;17(11):2506. doi: 10.3390/s17112506
  • Chen S, Wang H, Xu F, et al. Target classification using the deep convolutional networks for SAR images. IEEE Trans Geosci Remote Sens. 2016;47(6):1685–1697.
  • Wang L, Bai X, Zhou F. SAR ATR of ground vehicles based on ESENet. Remote Sens. 2019;11(11):1316. doi: 10.3390/rs11111316
  • Min R, Lan H, Cao Z, et al. A gradually distilled CNN for SAR target recognition. IEEE Access. 2019;7:42190–42200. doi: 10.1109/ACCESS.2019.2906564
  • Zhao J, Zhang Z, Yu W, et al. A cascade coupled convolutional neural network guided visual attention method for ship detection from SAR images. IEEE Access. 2018;6:50693–50708. doi: 10.1109/ACCESS.2018.2869289
  • Zhao P, Liu K, Zou H, et al. Multi-stream convolutional neural network for SAR automatic target recognition. Remote Sens. 2018;10(9):1473. doi: 10.3390/rs10091473
  • Malmgren-Hansen D, Kusk A, Dall J, et al. Improving SAR automatic target recognition models with transfer learning from simulated data. IEEE Geosci Remote Sens Lett. 2017;14(9):1484–1488. doi: 10.1109/LGRS.2017.2717486
  • Ding J, Chen B, Liu H, et al. Convolutional neural network with data augmentation for SAR target recognition. IEEE Geosci Remote Sens Lett. 2016;13(3):364–368.
  • Yan Y. Convolutional neural networks based on augmented training samples for synthetic aperture radar target recognition. J Electron Imaging. 2018;27(2):023024. doi: 10.1117/1.JEI.27.2.023024
  • Lv J. Exploiting multi-level deep features via joint sparse representation with application to SAR target recognition. Int J Remote Sens. 2020;41(1):320–338. doi: 10.1080/01431161.2019.1641246
  • Gao H, Peng S, Zeng W. Recognition of targets in SAR images using joint classification of deep features fused by multicanonical correlation analysis. Remote Sens Lett. 2019;10(9):883–892. doi: 10.1080/2150704X.2019.1629712
  • Cunha AL, Zhou J, Do MN. The nonsubsampled contourlet transform: theory, design, and applications. IEEE Trans Image Process. 2006;15(10):3089–3101. doi: 10.1109/TIP.2006.877507
  • Li S, Fang L, Yin H. Multitemporal image change detection using a detail-enhancing approach with nonsubsampled contourlet transform. IEEE Geosci Remote Sens Lett. 2012;9(5):836–840. doi: 10.1109/LGRS.2011.2182632
  • Xie W, Jiao L, Zhao J. PolSAR image classification via D-KSVD and NSCT-domain features extraction. IEEE Geosci Remote Sens Lett. 2016;13(2):227–231. doi: 10.1109/LGRS.2015.2506718
  • Zhang Z. Joint classification of multiresolution representations with discrimination analysis for SAR ATR. J Electron Imaging. 2018;27(4):043030.
  • Miao X, Shan Y. SAR target recognition via sparse representation of multi-view SAR images with correlation analysis. J Electromagn Waves Appl. 2019;33(7):897–910. doi: 10.1080/09205071.2019.1575290
  • Jin L, Chen J, Peng X. Joint classification of complementary features based on multitask compressive sensing with application to synthetic aperture radar automatic target recognition. J Electron Imaging. 2018;27(5):053034. doi: 10.1117/1.JEI.27.5.053034
  • Miao S, Liu X. Joint sparse representation of complementary components in SAR images for robust target recognition. J Electromagn Waves Appl. 2019;33(7):882–896. doi: 10.1080/09205071.2018.1496038
  • Liu S, Yang J. Target recognition in synthetic aperture radar images via joint multifeature decision fusion. J Electron Imaging. 2018;12(1):016012.
  • Wright J, Yang A, Ganesh A, et al. Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell. 2009;31(2):210–227. doi: 10.1109/TPAMI.2008.79
  • Zhang Z, Zhu W. Azimuthal constraint representation for synthetic aperture radar target recognition along with aspect estimation. Signal Image Video Process. 2019;13:1577–1584. doi: 10.1007/s11760-019-01511-7
  • Doo S, Smith G, Baker C. Target classification performance as a function of measurement uncertainty. Proc IEEE APSAR. 2015: 587–590.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.