662
Views
2
CrossRef citations to date
0
Altmetric
Invited Review Article

Progresses in metamaterials for advanced low-frequency perfect absorbers: a brief review

, , , , &
Pages 2251-2265 | Received 01 Jun 2020, Accepted 02 Sep 2020, Published online: 16 Sep 2020

References

  • Chen Z, Guo B, Yang Y, et al. Metamaterials based enhanced energy harvesting: a review. Physica B. 2014;438:1–8.
  • Chen W-C, Bingham CM, Mak KM, et al. Extremely subwavelength planar magnetic metamaterials. Phys Rev B. 2012;85:201104(R).
  • Liang YY, Liu HZ, Wang FQ, et al. High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths. Nanomaterials. 2018;8(5):288–293.
  • Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett. 2000;85:3966–3969.
  • Qin FF, Liu ZZ, Zhang Z, et al. Broadband full-color multichannel hologram with geometric metasurface. Opt Express. 2018;26(9):11577.
  • Deng J, Li Z, Zheng G, et al. Depth perception based 3D holograms enabled with polarization-independent metasurfaces. Opt Express. 2018;26(9):11843.
  • Li L-L, Cui TJ, Ji W, et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat Commun. 2017;8(1):197.
  • Schurig D, Mock J, Justice J, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science. 2006;314(5801):977–980.
  • Luo MH, Shen S, Zhou L, et al. Broadband wide-angle and polarization independent metamaterial absorber for the visible regime. Opt. Express. 2017;25(14):16715–16724.
  • Nguyen TT, Lim SJ. Wide incidence angle-insensitive metamaterial absorber for both TE and TM polarization using eight-circular-sector. Sci Rep. 2017;7(1):3204.
  • Lee DJ, Jeong HJ, Lim SJ. Electronically switchable broadband metamaterial absorber. Sci Rep. 2017;7(1):4891.
  • Nguyen TT, Lim SJ. Bandwidth-enhanced and wide angle-of-incidence metamaterial absorber using a hybrid unit cell. Sci Rep. 2017;7(1):14814.
  • Zhuang Y, Wang G, Zhang Q, et al. Low-scattering tri-band metasurface using combination of diffusion, absorption and cancellation. IEEE Access. 2018;6:17306–17312.
  • Johansson M, Holloway C, Kuester E. Effective electromagnetic properties of honeycomb composites, and hollow-pyramidal and alternating wedge absorbers. IEEE Trans Antennas Propag. 2005;53(2):728–736.
  • Deng T, Yu Y, Shen Z, et al. Design of 3-D multilayer ferrite-loaded frequency-selective rasorbers with wide absorption bands. IEEE Trans Microwave Theory Tech. 2019;67(1):108–117.
  • Wang Z, Zhang Z, Quan X, et al. A perfect absorber design using a natural hyperbolic material for harvesting solar energy. Sol Energy. 2018;159:329–336.
  • Sun H, Gu C, Chen X, et al. Broadband and broad-angle polarization-independent metasurface for radar cross section reduction. Sci Rep. 2017;7(1):40782.
  • Chen J, Hu Z, Wang G, et al. High-impedance surface-based broadband absorbers with interference theory. IEEE Trans Antennas and Propag. 2015;63(10):4367–4374.
  • Kim HK, Lee D, Lim S. Wideband-switchable metamaterial absorber using injected liquid metal. Sci Rep. 2016;6(1):31823.
  • Kundu D, Mohan A, Chakrabarty A. A compact ultrathin broadband absorber by reducing cross-polarized reflection from metalbacked anisotropic array. Microw Opt Technol Lett. 2017;59(4):970–976.
  • Bu DD, Yue CS, Zhang GQ, et al. Broadband, polarization-insensitive, and wide-angle microwave absorber based on resistive film. Chin Phys B. 2015;25:067802.
  • Huang X, Pan K, Hu Z. Experimental demonstration of printed graphene nano-flakes enabled flexible and conformable wideband radar absorbers. Sci Rep. 2016;6(1):38197.
  • Ozden K, Yucedag OM, Kocer H. Metamaterial based broadband RF absorber at X-band. AEU-Int J Electron Commun. 2016;70(8):1062–1070.
  • Zuo W, Yang Y, He X, et al. A miniaturized metamaterial absorber for ultrahigh-frequency RFID system. IEEE Antennas Wirel Propag Lett. 2017;16:329–332.
  • Zuo W, Yang Y, He X, et al. An ultrawideband miniaturized metamaterial absorber in the ultrahigh-frequency range. IEEE Antennas Wirel Propag Lett. 2017;16:928–931.
  • Montaser AM. Design of metamaterial absorber for all bands from microwave to terahertz ranges. Int J Adv Res Electron Commun Eng. 2016;5:1475–1481.
  • Ghosh S, Bhattacharyya S, Chaurasiya D, et al. An ultrawideband ultrathin metamaterial absorber based on circular split rings. IEEE Antennas Wirel Propag Lett. 2015;14:1172–1175.
  • Namai A, Sakurai S, Nakajima M, et al. Synthesis of an electromagnetic wave absorber for high-speed wireless communication. J Am Chem Soc. 2009;131(3):1170–1173.
  • Pretorius J. Design and manufacture of a ferrimagnetic wave absorber for cellular phone radiations. Electron Devices for Microwave and Optoelectronic Applications; EDMO 2004. 12th International Symposium on, IEEE; 2004. pp. 119–123.
  • Yoo YJ, Zheng HY, Kim YJ, et al. Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell. Appl Phys Lett. 2014;105(4):041902.
  • Bui ST, Bui VK, Nguyen VD, et al. Small-size metamaterial perfect absorber operating at low frequency. Adv Nat Sci: Nanosci Nanotechnol. 2014;5(4):045008.
  • Fan S, Song Y. UHF metamaterial absorber with small-size unit cell by combining fractal and coupling lines. Int J Antenn Propag. 2018;2018:9409152.
  • Wang N, Dong X, Zhou W, et al. Low-frequency metamaterial absorber with small-size unit cell based on corrugated surface. AIP Adv. 2016;6(2):025205.
  • Tofigh F, Amiri M, Shariati N, et al. Low-frequency metamaterial absorber using space-filling curve. J Electron Mater. 2019;48(10):6451–6459.
  • Ji W, Cai T, Wang G, et al. Three-dimensional ultra-broadband absorber based on novel zigzag-shaped structure. Opt Express. 2019;27(22):32835–32845.
  • Lin B, Zhao S, Da X, et al. Triple-band low frequency ultra-compact metamaterial absorber. J Appl Phys. 2015;117(18):184503.
  • Zhung Y, Wang G, Zhang Q, et al. Low-scattering tri-band metasurface using combination of diffusion, absorption and cancellation. IEEE Access. 2018;6:17306–17312.
  • Jiang W, Yan LL, Ma H, et al. Electromagnetic wave absorption and compressive behavior of a three-dimensional metamaterial absorber based on 3D printed honeycomb. Sci Rep. 2018;8(1):4817.
  • Huang YJ, Luo J, Pu MB, et al. Catenary electromagnetic for ultra-broadband lightweight absorbers and large-scale flat antennas. Adv Sci. 2019;6(7):1801691.
  • Vu DQ, Le DH, Dinh HT, et al. Broadening the absorption bandwidth of metamaterial absorber by coupling three dipole resonances. Phys B. 2018;534:90–97.
  • Cheng Y, He B, Zhao J, et al. Ultra-thin low-frequency broadband microwave absorber based on magnetic medium and metamaterial. J Electron Mater. 2017;46(2):1293–1299.
  • Jeong H, Lim S. Broadband frequency-reconfigurable metamaterial absorber using switchable ground plane. Sci Rep. 2018;8(1):9226.
  • Wang C-Y, Liang J-G, Cai T, et al. High-performance and ultra-broadband metamaterial absorber based on mixed absorption mechanisms. IEEE Access. 2019;7:57259–57266.
  • Tiep DH, Khuyen BX, Tung BS, et al. Enhanced-bandwidth perfect absorption based on a hybrid metamaterial. Opt Mat Exp. 2018;8(9):2751.
  • Khuyen BX, Tung BS, Kim YJ, et al. Broadband and ultrathin metamaterial absorber fabricated on a flexible substrate in the long-term evolution band. J Electron Mater. 2019;48(12):7937–7943.
  • Kim YJ, Hwang JS, Khuyen BX, et al. Flexible ultrathin metamaterial absorber for wide frequency band, based on conductive fibers. Sci Tech Adv Mater. 2018;19(1):711–717.
  • Li W, Lin L, Li C, et al. Radar absorbing combinatorial metamaterial based on silicon carbide/carbon foam material embedded with split square ring metal. Results Phys. 2019;12:278–286.
  • Zuo W, Yang Y, He X, et al. An ultrawideband miniaturized metamaterial absorber in the ultrahigh-frequency range. IEEE Antennas Wireless Propagation Lett. 2017;16:928–931.
  • Shen Y, Pei Z, Pang Y, et al. An extremely wideband and lightweight metamaterial absorber. J Appl Phys. 2015;117(22):224503.
  • Khuyen BX, Tung BS, Kim YJ, et al. Ultra-subwavelength thickness for dual/triple-band metamaterial absorber at very low frequency. Sci Rep. 2018;8(1):11632.
  • Kim YJ, Hwang JS, Yoo YJ, et al. Ultrathin microwave metamaterial absorber utilizing embedded resistors. J Phy D: Appl Phys. 2017;50(40):405110.
  • Jeong H, Nguyen TT, Lim S. Subwavelength metamaterial unit cell for low-frequency electromagnetic absorber applications. Sci Rep. 2018;8(1):16774.
  • Khuyen BX, Tung BS, Nguyen TT, et al. Realization for dual-band high-order perfect absorption, based on metamaterial. J Phy D: Appl Phys. 2020;53(10):105502.
  • Yuan W, Cheng Y. Low-frequency and broadband metamaterial absorber based on lumped elements: design, characterization and experiment. Appl Phys A. 2014;117(4):1915–1921.
  • Zhang HF, Yang J, Zhang H, et al. Design of an ultra-broadband absorber based on plasma metamaterial and lumped resistors. Opt Mater Exp. 2018;8(8):2103–2113.
  • Khuyen BX, Tung BS, Yoo YJ, et al. Miniaturization for ultrathin metamaterial perfect absorber in the VHF band. Sci Rep. 2017;7(1):45151.
  • Li S-J, Wu P-X, Xu H-X, et al. Ultra-wideband and polarization-insensitive perfect absorber using multilayer metamaterials, lumped resistors, and strong coupling effects. Nano Res Lett. 2018;13(1):386.
  • Khuyen BX, Tung BS, Kim YJ, et al. Sci Rep. 2018;8(1):11632.
  • Aleksandrova M, Kolev G, Cholakova I, et al. Photolithography versus lift off process for patterning of sputtered. Int J Thin Film Sci Technol. 2013;2(2):67–75.
  • Liao WC, Hsu SLC, Chu SY, et al. Imprint lithography for flexible transparent plastic substrates. Microelectron Eng. 2004;75(2):145–148.
  • Simon D, Ware T, Marcotte R, et al. A comparison of polymer substrates for photolithographic processing of flexible bioelectronics. Biomed Microdevices. 2013;15(6):925–939.
  • Kim HK, Ling K, Kim K, et al. Flexible inkjet-printed metamaterial absorber for coating a cylindrical object. Opt Express. 2015;23(5):5898.
  • Zha D, Dong J, Cao Z, et al. A multimode, broadband and all-inkjet-printed absorber using characteristic mode analysis. Opt Express. 2020;28(6):8609–8618.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.