248
Views
3
CrossRef citations to date
0
Altmetric
Articles

Photothermal therapy of cancer cells enhanced by glutathione (GSH) modified small-sized gold nanoparticles

, , &
Pages 2467-2487 | Received 05 Mar 2020, Accepted 08 Sep 2020, Published online: 21 Sep 2020

References

  • Kato Y, Ozawa S, Miyamoto C, et al. Acidic extracellular microenvironment and cancer. Cancer Cell Int. 2013;13:89. doi: 10.1186/1475-2867-13-89
  • Hejmadi M. Introduction to cancer biology. 2nd ed. Bookboon Publishing; 2010.
  • AL-Jawad SMH, Taha AA, Mohammed Redha A. Studying the structural, morphological, and optical properties of CuS:Ni nanostructure prepared by a hydrothermal method for biological activity. J Sol-Gel Sci Technol. 2019;91(2):310–323. doi: 10.1007/s10971-019-05023-1
  • Bettaieb A, Wrzal PK, Averill-Bates DA. Chapter 12: hyperthermia: cancer treatment and beyond. In: L Rangel, editor. Medical cancer treatment: conventional and innovative approaches. London: InTech; 2013.
  • Behrouzkia Z, Joveini Z, Keshavarzi B, et al. Hyperthermia: how can it be used? Oman Med J. 2016;2:89–97. doi: 10.5001/omj.2016.19
  • Jaque D, Martínez Maestro L, del Rosal B, et al. Nanoparticles for photothermal therapies. Nanoscale. 2014;6:9494. doi: 10.1039/C4NR00708E
  • Shanmugam V, Selvakumar S, Yeh CS. Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem Soc Rev. 2014;43:6254–6287. doi: 10.1039/C4CS00011K
  • Leung JP, Wu S, Chou KC, et al. Investigation of sub 100 nm gold nanoparticles for laser-induced thermotherapy of cancer. Nanomaterials. 2013;3:86–106. doi: 10.3390/nano3010086
  • Hubenthal F, Hendrich C, Träger F. Damping of the localized surface plasmon polariton resonance of gold nanoparticles. Appl Phys B. 2010;100:225–230. doi: 10.1007/s00340-010-4064-0
  • Evlyukhin AB, Kuznetsov AI, Novikov SM, et al. Optical properties of spherical gold mesoparticles. Appl Phys B. 2012;106:841–848. doi: 10.1007/s00340-011-4727-5
  • Shah M, Badwaik V, Kherde Y, et al. Gold nanoparticles: various methods of synthesis and antibacterial applications. Front Biosci. 2014;19:1320–1344. doi: 10.2741/4284
  • Guo L, Jackma J, Yang HH, et al. Strategies for enhancing the sensitivity of plasmonic nanosensors. Nanotoday. 2015;10:213–239. doi: 10.1016/j.nantod.2015.02.007
  • Wang JY, Chen J, Yang J, et al. Effects of surface charges of gold nanoclusters on long-term in vivo biodistribution, toxicity, and cancer radiation therapy. Int J Nanomed. 2016;11:3475–3485. doi: 10.2147/IJN.S106073
  • Zhang XD, Wu D, Shen X, et al. In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials. 2012;33:4628–4638. doi: 10.1016/j.biomaterials.2012.03.020
  • Zhang XD, Yang J, Song SS, et al. Passing through the renal clearance barrier: toward ultrasmall sizes with stable ligands for potential clinical applications. Int J Nanomed. 2014;9:2069–2072. doi: 10.2147/IJN.S64301
  • Zhang XD, Luo Z, Chen J, et al. Ultrasmall Au10−12 (SG)10−12 nanomolecules for high tumor specificity and cancer radiotherapy. Adv Mater. 2014;26:4565–4568. doi: 10.1002/adma.201400866
  • Broda J, Schmid G, Simon U. Size- and ligand-specific bioresponse of gold clusters and nanoparticles: challenges and perspectives. In: DMP Mingos, editor. Gold clusters, colloids and nanoparticles I. Cham: Springer International Publishing; 2014. p. 189–242.
  • Wade LG. Chapter 24: amino acids, peptides, and proteins. In: Rangel L, editor. Organic chemistry. 7th ed. Pearson Education. Wiley-VCH Verlag GmbH & Co. KGaA; 2011. p. 1153–1199.
  • AL-Jawad SMH, Taha AA, Al-Halbosiy MMF, et al. Synthesis and characterization of small-sized gold nanoparticles coated by bovine serum albumin (BSA) for cancer photothermal therapy. Photodiagnosis Photodyn Ther. 2018;21:201–210. doi: 10.1016/j.pdpdt.2017.12.004
  • Chevrier DM, Chatt A, Zhang P. Properties and applications of protein stabilized fluorescent gold nanoclusters: short review. J Nanophoton. 2012;6:1–17. doi: 10.1117/1.JNP.6.064504
  • Briñas RP, Hu M, Qian L, et al. Gold nanoparticle size controlled by polymeric Au(I) thiolate precursor size. J Am Chem Soc. 2008;130:975–982. doi: 10.1021/ja076333e
  • Hou H, Chen L, He H, et al. Fine-Tuning LSPR response of gold nanorod/polyaniline core-shell nanoparticles with high photothermal efficiency for cancer cell ablation. J Mater Chem B. 2015;3:5189–5196. doi: 10.1039/C5TB00556F
  • Jiang K, Smith DA, Pinchuk A. Size-dependent photothermal conversion efficiencies of plasmonically heated gold nanoparticles. J Phys Chem C. 2013;117:27073–27080. doi: 10.1021/jp409067h
  • Malola SA, Lehtovaara L, Enkovaara J, et al. Birth of the localized surface plasmon resonance in monolayer protected gold nanoclusters. ACS Nano. 2013;7:10263–10270. doi: 10.1021/nn4046634
  • Abadeer NS, Murphy CJ. Recent progress in cancer thermal therapy using gold nanoparticles. J Phys Chem C. 2016;120:4691–4716. doi: 10.1021/acs.jpcc.5b11232
  • Takano S, Yamazoe S, Koyasu K, et al. Slow-reduction synthesis of a thiolate-protected one-dimensional gold cluster showing an intense near-infrared absorption. J Am Chem Soc. 2015;137:7027–7030. doi: 10.1021/jacs.5b03251
  • Deng H, Zhong Y, Du M, et al. Theranostic self-assembly structure of gold nanoparticles for NIR photothermal therapy and X-ray computed tomography imaging. Theranostics. 2014;4:904–918. doi: 10.7150/thno.9448
  • Iida K, Noda M, Ishimura K, et al. First-principles computational visualization of localized surface plasmon resonance in gold nanoclusters. J Phys Chem. 2014;118:11317–11322. doi: 10.1021/jp5088042
  • Hu J, Bae YH. pH-sensitive nanosystems. In: Torchilin V, editor. Smart pharmaceutical nanocarriers. London: Imperial College Press; 2016. p. 49–81.
  • Pillai PP, Kowalczyk B, Grzybowski BA. Self-assembly of like-charged nanoparticles into microscopic crystals. Nanoscale. 2016;8:157–161. doi: 10.1039/C5NR06983A
  • Mizuhara T, Saha K, Moyano DF, et al. Acylsulfonamide-functionalized zwitterionic gold nanoparticles for enhanced cellular uptake at tumor pH. Angew Chem Int Ed. 2015;54:6567–6570. doi: 10.1002/anie.201411615
  • Zhou C, Long M, Qin Y, et al. Luminescent gold nanoparticles with efficient renal clearance. Angew Chem Int Ed Engl. 2011;50:3168–3172. doi: 10.1002/anie.201007321
  • Salzano G, Costa FD, Torchilin PV. SiRNA delivery by stimuli-sensitive nanocarriers. Curr Pharm Des. 2015;21:4566–4573. doi: 10.2174/138161282131151013190410
  • Yao M, He L, McClements DJ, et al. Uptake of gold nanoparticles by intestinal epithelial cells: impact of particle size on their absorption, accumulation, and toxicity. J Agric Food Chem. 2015;63:8044–8049. doi: 10.1021/acs.jafc.5b03242
  • Fratoddi I, Venditti I, Cametti C, et al. How toxic are gold nanoparticles? The state-of-the-art. Nano Res. 2015;8:1771–1799. doi: 10.1007/s12274-014-0697-3
  • Capek I. On biodecorated gold nanoparticles distributed within tissues and cells. J Nanomed Res. 2015;2:1–10. doi: 10.15406/jnmr.2015.02.00020
  • Oh E, Delehanty JB, Sapsford KE, et al. Cellular uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides and particle size. ACS Nano. 2011;5:6434–6448. doi: 10.1021/nn201624c
  • Sousa AA, Morgan JT, Brown PH, et al. Synthesis, characterization and direct intracellular imaging of ultrasmall and uniform glutathione-coated gold nanoparticles. Small. 2012;8:2277–2286. doi: 10.1002/smll.201200071
  • Wang P, Wang X, Wang L, et al. Interaction of gold nanoparticles with proteins and cells. Sci Technol Adv Mater. 2015;16:1–15.
  • Giljohann DA, Seferos DS, Daniel WL, et al. Gold nanoparticles for biology and medicine. Angew Chem Int Ed. 2010;49:3280–3294. doi: 10.1002/anie.200904359
  • Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics. 2014;4:81–89. doi: 10.7150/thno.7193
  • Silva J, Fernandes AR, Baptista PV. Application of nanotechnology in drug delivery. In: Sezer AD, editor. Application of nanotechnology in drug delivery. 2014. London: InTech; p. 128–154.
  • Umair M, Javed I, Rehman M, et al. Nanotoxicity of inert materials: the case of gold, silver and iron. J Pharm Pharm Sci. 2016;19:161–180. doi: 10.18433/J31021
  • Douplik A. Laser surgery. In: S.A. Zhou, L. Zhou, physical medicine and rehabilitation. In: Brahme A, editor. Comprehensive biomedical physics. Elsevier B.V.; 2014. p. 171–199.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.