279
Views
4
CrossRef citations to date
0
Altmetric
Review

A comprehensive review of depressed collectors of slow-wave devices

ORCID Icon &
Pages 95-137 | Received 10 May 2020, Accepted 10 Sep 2020, Published online: 22 Sep 2020

References

  • Gilmour AS. Principles of traveling-wave tubes. London : Artech House Microwave Library; 1994.
  • Gilmour AS. Microwave tubes. London : Artech House Publishers; 1986.
  • Gittins JF. Power travelling-wave tubes. New York : American Elsevier; 1965.
  • Barker RJ , Luhmann NC , Booske JH , et al. Modern microwave and millimeter-wave power electronics. Hoboken : Wiley-IEEE Press; 2005.
  • Basu BN. Electromagnetic theory and applications in beam-wave electronics. Singapore : World Scientific; 1996.
  • Sterzer F. Improvement of traveling-wave tube efficiency through collector potential depression. IRE Trans Electron Devices. 1958;5(4):300–305. doi: 10.1109/T-ED.1958.14437
  • Hansen SC. Improvement of beam-tube performance by collector-potential depression, and a novel design. IRE Trans Electron Devices. 1960;7:282–288. doi: 10.1109/T-ED.1960.14695
  • Kosmahl HG. Modern multistage depressed collectors – a review. Proc IEEE. 1982;70:1325–1334. doi: 10.1109/PROC.1982.12481
  • Kosmahl HG. How to quickly predict the overall TWT and multistage depressed collector efficiency. IEEE Trans Electron Devices. 1980;27:526–529. doi: 10.1109/T-ED.1980.19894
  • Latha AM , Gahlaut V , Sharma RK , et al. Multistage depressed collector with improved thermal management for high efficiency travelling wave tubes. IEEE Trans Electron Devices. 2014;61:1536–1540. doi: 10.1109/TED.2014.2309339
  • Rao PRR , Chanakya T , Datta SK , et al. Thermal co-simulation of depressed collector of a TWT using CST studio. IEEE Int Vac Electron Conf. 2014;2014:151–152. doi: 10.1109/IVEC.2014.6857534
  • Mistry C , Chakraborty S , Arya S , et al. A study of thermal behavior of travelling wave tube. 2018 IEEE International Vacuum Electronics Conference. IVEC 2018; 2018.
  • Latha AM , Gahlaut V , Ghosh SK. A model for quick thermal prediction of multi-stage depressed collector. J Electromagn Waves Appl. 2018;32:543–553. doi: 10.1080/09205071.2017.1399831
  • Gahlaut V , Latha AM , Alvi PA , et al. Thermal impact on the performance of highly efficient multi-stage depressed collector for space TWT. Frequenz. 2014.
  • Smith BL , Carpentier M-H. The microwave engineering handbook. Berlin : . Chapman & Hall; 1993; First.
  • Bo Q , Feng J , Liu M , et al. Development of the K-band 100W TWT with radiation cooling collector. IVEC 2012. IEEE; 2012. p. 299–300.
  • Kupidura D , Vasseur F , Laurent A , et al. Thales 45W and 100W Q-Band conduction cooled travelling wave tubes. 2015 IEEE International Vacuum Electronics Conference. IEEE; 2015. p. 1–2.
  • Konnov AV , Nikitin AP , Akimov PI , et al. Thermal analysis of multibeam klystron collector with forced air cooling. 2014 Tenth International Vacuum Electronics Conference. IEEE; 2014. p. 1–2.
  • Nemoto A , Soga K , Yoshida M , et al. Development of DBS band 750W TWT. 2009 IEEE International Vacuum Electronics Conference. IEEE; 2009. p. 123–124.
  • Lorenzini G , Biserni C. A vapotron effect application for electronic equipment cooling. J Electron Packag. 2003;125:475–479. doi: 10.1115/1.1615796
  • Escourbiac F , Schlosser J , Merola M , et al. Experimental optimisation of a hypervapotron® concept for ITER plasma facing components. Fusion Eng Des. 2003;66–68:301–304. doi: 10.1016/S0920-3796(03)00172-8
  • Peauger F , Beunas A , Thouvenin P , et al. Development of a 3.7-GHz 750-kW CW Klystron for tore supra. IEEE Trans Electron Devices. 2005;52:878–883. doi: 10.1109/TED.2005.846340
  • Srivastava V , Sinha A , Joshi S , et al. Design of four-stage depressed collector for a high efficiency Helix TWT. 2002. p. 257–258.
  • Tammaru I. Refocusing of the spent axisymmetric beam in coupled cavity traveling wave tubes; 1971.
  • Litton CV. Electrode structure for velocity modulation tubes US patent (Application Number: US35304240A); 1943; p. 3–6.
  • Wolkstein HJ. Effect of collector potential on the efficiency of traveling-wave tubes. RCA Rev. 1956;19:33–34.
  • Dunn DA , Borghi RP , Wada G. A crossed-field multisegment depressed collector for beam-type tubes. IRE Trans Electron Devices. 1960;10:262–267. doi: 10.1109/T-ED.1960.14691
  • Chen TS , Wolkstein HJ , McMurrough RW. Theory and performance of depressed trochoidal collectors for improving traveling-wave efficiency. IEEE Trans Electron Devices. 1963;10:243–254. doi: 10.1109/T-ED.1963.15185
  • Neugebauer W , Mihran TG. A ten-stage electrostatic depressed collector for improving klystron efficiency. IEEE Trans Electron Devices. 1972;19:111–121. doi: 10.1109/T-ED.1972.17379
  • Okoshi T , Chiu E-B , Matsuki S , et al. The tilted electric field soft-landing collector and its application to a traveling-wave tube. IEEE Trans Electron Devices. 1972;19:104–110. doi: 10.1109/T-ED.1972.17378
  • Hechtel JR. A novel electrostatic-focusing depressed collector for linear beam tubes. IEEE Trans Electron Devices. 1977;24:45–52. doi: 10.1109/T-ED.1977.18676
  • Ramana R , Pamisetty R , Datta SK , et al. 16. 4: 2D and 3D Analysis of a 2-stage depressed collector including the effects of secondary electrons. 2010 IEEE International Vacuum Electronics Conference. 2010; p. 411–412.
  • Goyal N , Shrivastav NJ , Gahlaut V , et al. P2-28: a non-conventional multi-stage depressed collector for high efficiency applications. 2011 IEEE International Vacuum Electronics Conference. 2011;3 p. 281–282.
  • Shrivastav N , Yadav S , Latha AM , et al. Multi stage depressed collector with reduced size and weight for space applications. 2012 IEEE 13th International Vacuum Electronics Conference. IVEC 2012. 2012 p. 451–452.
  • Latha AM , Gahlaut V , Kaur J , et al. A novel geometry multi-stage depressed collector for the efficiency enhancement of space traveling wave tubes. J Infrared Millimeter Terahertz Waves. 2013;34:53–61. doi: 10.1007/s10762-012-9951-5
  • Shi Z , Gamzina D , Barnett LR , et al. 3-D simulations and design of multistage depressed collectors for sheet beam millimeter wave vacuum electron devices. IEEE Trans Electron Devices. 2013;60:2912–2917. doi: 10.1109/TED.2013.2272602
  • Kemp MA , Jensen A , Neilson J. Klystron modulator system incorporating a pulsed depressed collector. 2013 Abstr. IEEE International Vacuum Electronics Conference. 201. p. 3.
  • Kemp MA , Jensen A , Neilson J. Pulsed depressed collector for high-efficiency RF Systems. 2013 IEEE 14th International Vacuum Electronics Conference. 2013. p. 1–2.
  • Kemp MA , Jensen A , Neilson J , et al. A self-biasing pulsed depressed collector. IEEE Trans Electron Devices. 2014;61:1824–1829. doi: 10.1109/TED.2014.2300011
  • Kemp MA , Jensen A , Neilson J. Experimental demonstration of a pulsed, self-biasing depressed collector. 2014. p. 2–3.
  • Kemp MA. Inverse Marx modulators for self-biasing klystron depressed collectors. Electron Lett. 2014;50:18–19. doi: 10.1049/el.2014.1237
  • Jiang Y , Teryaev VE , Hirshfield JL. Partially grounded depressed beam collector. IEEE Trans Electron Devices. 2015;62:4265–4270. doi: 10.1109/TED.2015.2490238
  • Zhang Q , Wang Y , Hu Y , et al. Elliptical electrode three-stage depressed collector for one-dimensional compressed miniaturized TWT. 2015 IEEE International Vacuum Electronics Conference. IEEE; 2015. p. 1–2.
  • Zhang X , Hu Q , Hu Y , et al. Design of multistage depressed collector for Ku-Band three-beam TWT. IEEE International Vacuum Electronics Conference. IEEE; 2015. p. 2–3.
  • Latha AM , Ghosh SK , Panda PC , et al. Novel asymmetric high efficient multi-stage depressed collector for space traveling wave tubes. ICOPS/BEAMS 2014 – 41st IEEE International Conference on Plasma Science. 20th International Conference High-Power Part. Beams. 2015. p. 5–7.
  • Latha AM , Ghosh SK. Design and development of a novel, compact, and light-weight multistage depressed collector for space TWTs. IEEE Trans Electron Devices. 2016;63:481–485. doi: 10.1109/TED.2015.2500025
  • Latha AM , Ghosh SK. An asymmetric highly efficient multistage depressed collector for space TWTs. IEEE Trans Electron Devices. 2016;63(5):2139–2144. doi: 10.1109/TED.2016.2544885
  • Wang Z , Xu X , Gong Y , et al. A non-axisymmetric structure multistage depressed collector for sheet beam VEDs. 2017;1. p. 19–22.
  • Latha AM , Chakraborty S , Ghosh SK. Half cylinder electrodes for space applications. IEEE International Electromagnetics and Antenna Conference. 2017. p. 2–3.
  • Yang J , Zhang X , Du Y , et al. Design of a multistage depressed collector for W-band pulsed traveling-wave tubes. IEEE Trans Electron Devices. 2019;66:4056–4061. doi: 10.1109/TED.2019.2931303
  • Ramins P , Fox TA. Performance of computer-designed small-sized four-stage depressed collector for operation of dual-mode traveling wave tube. NASA Tech. Pap. 1981.
  • Simons RN , Force DA , Spitsen PC , et al. High-efficiency K-Band space traveling-wave tube amplifier for near-earth high data rate Communications. IEEE MTT-S International Microware Symposium Digest. 2010. p. 1400–1403.
  • Simons RN , Wintucky EG , Wilson JD , et al. Ultra high power and efficiency space traveling- wave tube amplifier power combiner with reduced size and mass for NASA missions. IEEE Trans Microw Theory Tech. 2009;57:582–588. doi: 10.1109/TMTT.2008.2012298
  • Gun FE. Electron optics simulator: a three-dimensional collector design tool. IEEE Trans Electron Devices. 2009;56:140–148. doi: 10.1109/TED.2008.2008377
  • Hu Q , Huang T , Li J , et al. The multistage depressed collector design using EOS. IVEC 2012. 2012. p. 81–82.
  • Li B , Li J-Q , Hu Q , et al. Recent developments to the microwave tube simulator suite. IEEE Trans Electron Devices. 2014;61:1735–1741. doi: 10.1109/TED.2014.2307058
  • Latha AM , Gahlaut V , Arya S , et al. Improvements in the fabrication technology of multi-stage depressed collector for space traveling wave tubes. IEEE MTT-S International Microwave RF Conference 2013. p. 1–3.
  • Latha AM , Sharma RK , Kumar Y , et al. Techniques for the development of multistage depressed collectors. IEEE Transactions on Electron Devices. 2015.
  • Latha AM , Gahlaut V , Sharma RK , et al. Challenges in achieving hermetic brazing joints in single-insulator multi-stage depressed collector of travelling wave tubes. Vacuum. 2020;172:109101. doi: 10.1016/j.vacuum.2019.109101
  • Antonsen TM. Advances in modeling of vacuum electronic devices. 2008 IEEE International Vacuum Electron Conference IEEE; 2008. p. 1–2.
  • Antonsen TM , Mondelli AA , Levush B , et al. Advances in modeling and simulation of vacuum electronic devices. Proc IEEE. 1999;87:804–839. doi: 10.1109/5.757256
  • Parker RK , Abrams RH , Danly BG , et al. Vacuum electronics. IEEE Trans Microw Theory Tech. 2002;50:835–845. doi: 10.1109/22.989967
  • True R. Single and multistage depressed collector design in high power linear beam tubes. International Conference Plasma Science. IEEE; 1993. p. 77.
  • Kumar L , Spädtke P , Carter RG , et al. Three-dimensional simulation of multistage depressed collectors on micro-computers. IEEE Trans Electron Devices. 1995;42:1663–1673. doi: 10.1109/16.405282
  • Li B , Yang ZH , Li J , et al. Application and validation of microwave tube simulator suite. 2010 8th International Vacuum Electron Sources Conference. Nanocarbon. IEEE; 2010. p. 158–159.
  • Kumar L , Ramana Rao PR. Secondary emission modelling for depressed collectors in PIERCE. 4th IEEE International Conference Vacuum Electron. 2003. IEEE; p. 14–15.
  • Rao PRR , Datta SK , Deshmukh VA , et al. P4-32: Simulation of collectors for TWT including the effects of SEE using PIERCE. 2011 IEEE International Vacuum Electron Conference. 2011. p. 509–510.
  • Vaden KR , Heinen VO. Three-dimensional modeling of multistage depressed collectors. p. 441.
  • Detweiler HK. Characteristics of magnetically focused large signal. traveling-wave amplifiers. Michigan : University of Michigan; 1968.
  • Curren AN , Dayton JA , Palmer RW , et al. The Cassini mission Ka-band TWT. Proc. 1994 IEEE International Electron Devices Meet. IEEE; p. 783–786.
  • Xavier CC , Motta CC. A four-stage depressed collector biasing voltages study using the XMGUN Code. 2011 IEEE Pulsed Power Conference. 2011. p. 383–386.
  • Niceno B. Easymesh [Internet]. Available from: http://web.mit.edu/easymesh_v1.4/www/easymesh.html .
  • Held B , Deford J , Petillo J , et al. 23. 3: Advanced electron guns and depressed collectors design and optimization using the MICHELLE/ANALYST environment. 2008. p. 457–458.
  • Gajaria D , Cusick M , Ramirez JL , et al. Multi-stage depressed collector design using MICHELLE in ANALYST. IVEC 2012. 2012. p. 431–432.
  • Coco S. Three-dimensional FE modeling of multistage depressed TWT collectors. IEEE Trans Magn. 2001;37:3167–3170. doi: 10.1109/20.952568
  • Tao H , Zhonghai Y , Bin L , et al. Development of a 2D multistage depressed collector code for TWT. 2006. p. 361–362.
  • Valfells A , Singh A , Kolander M , et al. Improved modeling of backscattered electron effects in a code for depressed collector design. 2002. p. 44–45.
  • Simulations FTP. P2-22: design of multistage depressed collectors using 3D conformal. 2010 IEEE International Vacuum Electron Conference. 2010. p. 265–266.
  • Vaden KR , Wilson JD , Bulson BA. A simulated annealing algorithm for the optimization of multistage depressed collector efficiency. 1983. p. 164–165.
  • Singh A , Robey C , Goldstein J , et al. Computer-aided optimization of design parameters for depressed collectors in optimization of depressed potentials references. 2000. p. 331–332.
  • Herrmannsfeldt WB. Developments simulation in the electron program, EGUN. 1994;1994.
  • Herrmannsfeldt WB. EGUN: an electron optics and gun design program. Menlo Park (CA ): Stanford Linear Accelerator Center; 1988.
  • Singh A , Rajapatirana S , Granatstein VL. A new algorithm for tracing back-scattered electrons. Conference Digest International Conference Infrared Miliim. Waves. 1997. p. 190–191.
  • Deford J , Held B , Chernyakova L , et al. Optimization of multistage collectors using the MICHELLE code within the analyst modeling framework. 2006;30. p. 87–88.
  • Stron R , Price K. Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim. 1997;11:341–359. doi: 10.1023/A:1008202821328
  • Ghosh TK , Carter RG , Member S. Optimization of multistage depressed collectors. IEEE Trans Electron Devices. 2007;54:2031–2039. doi: 10.1109/TED.2007.900003
  • Srivastava V. SUNRAY-1D and SUNRAY-2.5D codes for large-signal analysis of a space TWT. 2013 IEEE 14th International Vacuum Electron Conference. IEEE; 2013. p. 1–2.
  • Srivastava V. Software packages for design of TWTs with large-signal analysis. IETE Tech Rev. 2001;18:487–494. doi: 10.1080/02564602.2001.11416999
  • Srivastava V. SUNRAY-2.5 D code for multi-signal large-signal analysis of a complete helix TWT. 2011 IEEE International Vacuum Electron Conference. IEEE; 2011. p. 303–304.
  • Ghosh TK , Carter RG. Design optimisation of multistage depressed collectors for high efficiency travelling wave tubes using genetic algorithm. 2002. p. 158–159.
  • Coco S , Laudani A , Pulcini G , et al. Shape optimization of multistage depressed collectors by parallel evolutionary algorithm. IEEE Trans Magn. 2012;48:435–438. doi: 10.1109/TMAG.2011.2174035
  • Coco S , Laudani A , Pollicino G , et al. A new self-consistent unbounded magnetic field 3-D FE computation for electron guns. IEEE Trans Magn. 2010;46:3425–3428. doi: 10.1109/TMAG.2010.2044391
  • Xavier CC , Laudani A. The accelerated multi-stage depressed collector code COLLGUN using. IEEE Int Vac Electron Conf. 2014: 17–18. doi: 10.1109/IVEC.2014.6857468
  • Bugnot D. Retrosimulation of a space traveling-wave tube 250 W, Ka-band, 4-stages collector. Lund : Lund University; 2015.
  • Ghosh TK. Three dimensional modelling and optimisation of multistage collectors. Lancaster : Lancaster University; 2002.
  • Seiler H. Secondary electron emission in the scanning electron microscope. J Appl Phys. 1983;54:R1–R18. doi: 10.1063/1.332840
  • Curren AN. Carbon and carbon-coated electrodes for multistage depressed collectors for electron-beam devices – a technology review. IEEE Trans Electron Devices. 1986;33:1902–1914. doi: 10.1109/T-ED.1986.22842
  • Arya S , Latha AM , Ghosh SK , et al. Carbon film deposited collector electrode for high efficiency TWTs. Indian J Pure Appl Phys. 2016;54(2):111–115.
  • Ramins P , Lesny GG , Ebihara BT , et al. Performance of a small, graphite electrode, multistage depressed collector with a 500-W, continuous wave, 4. 8- to 9. 6-GHz traveling wave tube. NASA Tech. Pap. 1988.
  • Ramins P , Ebihara BT. Isotropic graphite multistage depressed collectors – a progress report. IEEE Trans Electron Devices. 1989;36:817–824. doi: 10.1109/16.22492
  • Ebihara BT , Ramins P. Design, fabrication and performance of small, graphite electrode multi-stage depressed collectors with 200W CW, 8- to 18-GHz traveling wave tubes. 1987.
  • Dayton JA. Review of the suppression of secondary electron emission from the electrodes of multistage collectors. Int Symp Discharges Electr Insul Vacuum, ISDEIV. 1998;1:9–23.
  • Zameroski N , Svimonishvili T , Gilmore M , et al. Measurements of secondary electron yield from materials with application to depressed collectors. 2004. p. 0–1.
  • Shrivastav N , Sharma RK , Srivastava V. Design of multistage depressed collector for Ka-Band 40W high efficiency Helix TWT. 2009 Application Electromagnetic Conference. 2009. p. 1–3.
  • Bera A , Kwon O , Barik RK , et al. P1-6: design of depressed collector for 94 GHz CCBWO. 2011 IEEE International Vacuum Electron Conference. 2011; 36. p. 135–136.
  • Rodney J , Vaughan M. A new formula for secondary emission yield. IEEE Trans Electron Devices. 1989;36:1963–1967. doi: 10.1109/16.34278
  • Ding MQ , Qu B , Bai G , et al. P3-16: efficiency improvement of TWTs by surface modification of multistage depressed collectors. p. 1–2.
  • Symons RS. Grooved multi-stage depressed collector for secondary electron suppression. 2002. p. 11.
  • Ye M , Dan W , He Y. Mechanism of total electron emission yield reduction using a micro-porous surface. J Appl Phys. 2017;121:124901. doi: 10.1063/1.4978760

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.