163
Views
1
CrossRef citations to date
0
Altmetric
Articles

Novel substrate integrated waveguide cavity-based unified multiband permittivity and permeability estimation approach

ORCID Icon, ORCID Icon &
Pages 2499-2513 | Received 29 Dec 2019, Accepted 16 Sep 2020, Published online: 30 Sep 2020

References

  • Murthy VRK, Sundaram S, Viswanathan B. Microwave materials. New York (NY): Springer; 1994.
  • Ikonen PMT, Rozanov KN, Osipov AV, et al. Magnetodielectric substrates in antenna miniaturization: potential and limitations. IEEE Trans Antennas Propag. 2006;54:3391–3399. doi: 10.1109/TAP.2006.884303
  • Acher O. Modern microwave magnetic materials: recent advances and trends. J Magn Magn Mater. 2009;321:2033–2034. doi: 10.1016/j.jmmm.2008.09.021
  • Dimri MC, Kashyap SC, Dube DC. Complex permittivity and permeability of Co2U(Ba4Co2Fe36O60) hexaferrite bulk and composite thick films at radio and microwave frequencies. IEEE Trans Magn. 2006;42:3635–3640. doi: 10.1109/TMAG.2006.882378
  • Tiwari NK, Singh SP, Jha AK, et al. Simplified approach for broadband RF testing of low loss magneto-dielectric samples. IEEE Trans Instrum Meas. 2020;69(5):2248–2257.
  • Harris V. The role of magnetic materials in RF, microwave, and mm wave devices: the quest for self-biased materials. Proceeding of the IEEE National Aerospace Electron Conference (NAECON). 2010 July 14–16;Fairborn (OH).
  • Balanis CA. Advanced engineering electromagnetics. Hoboken (NJ): Wiley; 1999.
  • Raveendranath U, Mathew KT. New cavity perturbation technique for measuring complex permeability of ferrite materials. Microw Opt Technol Lett. 1998;18:241–243. doi: 10.1002/(SICI)1098-2760(199807)18:4<241::AID-MOP1>3.0.CO;2-E
  • Chen LF, Ong CK, Neo CP, et al. Microwave electronics: measurement and materials characterization. Tottenham, London: Wiley; 2004.
  • Krupka J. Frequency domain complex permittivity measurements at microwave frequencies. Meas Sci Technol. 2006;17:R55–R70. doi: 10.1088/0957-0233/17/6/R01
  • Lin M, Duane MH, Afsar MN. Cavity-perturbation measurement of complex permittivity and permeability of common ferrimagnetics in microwave-frequency range. IEEE Trans Magn. 2006;42:2885–2887. doi: 10.1109/TMAG.2006.879885
  • Jha AK, Tiwari NK, Akhtar MJ. Novel microwave resonant technique for accurate testing of magnetic materials. IEEE Trans Microw Theory Tech. 2019;67:239–248. doi: 10.1109/TMTT.2018.2880964
  • Xu F, Wu K. Guided-wave and leakage characteristics of substrate integrated waveguide. IEEE Trans Microw Theory Tech. 2005;53:66–73. doi: 10.1109/TMTT.2004.839303
  • Silvestri L, Massoni E, Tomassoni C, et al. Substrate integrated waveguide filters based on a dielectric layer with periodic perforations. IEEE Trans Microw Theory Tech. 2017;65:2687–2697. doi: 10.1109/TMTT.2017.2709745
  • Tomassoni C, Silvestri L, Ghiotto A, et al. Substrate-integrated waveguide filters based on dual-mode air-filled resonant cavities. IEEE Trans Microw Theory Tech. 2018;66:726–736. doi: 10.1109/TMTT.2017.2786212
  • Saeed K, Pollard RD, Hunter IC. Substrate integrated waveguide cavity resonators for complex permittivity characterization of materials. IEEE Trans Microw Theory Tech. 2008;56:2340–2347. doi: 10.1109/TMTT.2008.2003523
  • Lobato-Morales H, Corona-Chávez A, Murthy DVB, et al. Complex permittivity measurements using cavity perturbation technique with substrate integrated waveguide cavities. Rev Sci Instrum. 2010;81:064704. doi: 10.1063/1.3442512
  • Waldron RA. Perturbation theory of resonant cavities. Proc Inst Electr Eng. 1960;107(C):272–274. doi:10.1049/pi-c.1960.0041.
  • Harrington RF. Time-harmonic electromagnetic fields. NewYork (NY): Wiley; 2001.
  • Han K, Swaminathan M, Pulugurtha R, et al. RF characterization of magnetodielectric material using cavity perturbation technique. IEEE Trans Compon Packag Manuf Technol. 2015;5:1850–1859. doi: 10.1109/TCPMT.2015.2465383
  • Tiwari NK, Jha AK, Singh SP, et al. Generalized multimode SIW cavity-based sensor for retrieval of complex permittivity of materials. IEEE Trans Microw Theory Tech. 2018;66:3063–3072. doi: 10.1109/TMTT.2018.2830332
  • Pozar DM. Microwave engineering. Hoboken (NJ): Wiley; 2012.
  • Stergiou CA, Manolakis I, Yioultsis VT, et al. Dielectric and magnetic properties of new rare-earth substituted Bahexaferrites in the 2–18 GHz frequency range. J Magn Magn Mater. 2009;322:1532–1535. doi: 10.1016/j.jmmm.2009.07.082
  • CST-MWS Studio. CST, Framingham (MA); 2017.
  • Jha AK, Akhtar MJ. Design of multilayered epsilon-near-zero microwave planar sensor for testing of dispersive materials. IEEE Trans Microw Theory Tech. 2015;63:2418–2426. doi: 10.1109/TMTT.2015.2451659
  • Ansari A, Akhtar MJ. Investigation on electromagnetic characteristics, microwave absorption, thermal and mechanical properties of ferromagnetic cobalt - polystyrene composites in the X-band (8.4–12.4 GHz). RSC Adv. 2016;6:13846–13857. doi: 10.1039/C5RA26489H
  • Gama AM, Rezende MC. Complex permeability and permittivity variation of carbonyl iron rubber in the frequency range of 2 to 18 GHz. J Aerosp Technol Manag. 2010;2:59–62. doi: 10.5028/jatm.2010.02015962

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.