160
Views
1
CrossRef citations to date
0
Altmetric
Articles

Surrogate-based computational analysis and design for H-shaped microstrip antenna

ORCID Icon &
Pages 71-82 | Received 28 Mar 2020, Accepted 21 Sep 2020, Published online: 05 Oct 2020

References

  • Garg R , Bhartia P , Bahl I , et al. Microstrip antenna design handbook. Artech House Antennas and Propagation Library. Norwood : Artech House; 2001.
  • Kumar G , Ray KP. Broadband microstrip antennas. Norwood : Artech House; 2003.
  • Ustun D , Toktas A , Akdagli A. Deep neural network-based soft computing the resonant frequency of E-shaped patch antennas. AEU – Int J Electron Commun. 2019;102:54–61. doi: 10.1016/j.aeue.2019.02.011
  • Toktas A. Scalable notch antenna system for multiport applications. Int J Antennas Propag. 2016;2016:1–8. doi: 10.1155/2016/7038103
  • Toktas A. G-shaped band-notched ultra-wideband MIMO antenna system for mobile terminals. IET Microwaves, Antennas Propag. 2017;11:718–725. doi: 10.1049/iet-map.2016.0820
  • Siakavara K. Methods to design microstrip antennas for modern applications. In: Nasimuddin N , editor. Microstrip antennas. London : InTech; 2011. p. 173–236.
  • Gao S-C , Li L-W , Leong M-S , et al. Analysis of an H-shaped patch antenna by using the FDTD method. Prog Electromagn Res. 2001;34:165–187. doi: 10.2528/PIER01060501
  • Sheta AF , Mohra A , Mahmoud SF. Multi-band operation of a compact H-shaped microstrip antenna. Microw Opt Technol Lett. 2002;35:363–367. doi: 10.1002/mop.10608
  • Toktas A. Calculating the resonant frequecy of H-shaped microstrip antennas by using differential evolution algorithm [master’s thesis]. Inst Nat Appl Sci. Mersin University. 2009.
  • Akdagli A , Toktas A. A novel expression in calculating resonant frequency of H-shaped compact microstrip antennas obtained by using artificial bee colony algorithm. J Electromagn Waves Appl. 2010;24:2049–2061. doi: 10.1163/156939310793675989
  • Kayabasi A , Bicer MB , Akdagli A , et al. Computing resonant frequency of H-shaped compact mıcrostrip antennas operating at UHF band By using artificial neural networks. J Fac Eng Archit Gazi Univ. 2011;26:833–840.
  • Toktas A. Log-periodic dipole array-based MIMO antenna for the mobile handsets. J Electromagn Waves Appl. 2016;30:351–365.
  • Queipo NV , Haftka RT , Shyy W , et al. Surrogate-based analysis and optimization. Prog Aerosp. Sci. Jan 2005;41:1–28. doi: 10.1016/j.paerosci.2005.02.001
  • Koziel S , Bekasiewicz A , Szczepanski S. Multi-objective design optimization of antennas for reflection, size, and gain variability using kriging surrogates and generalized domain segmentation. Int J RF Microw Comput Eng. 2018;28:1–11.
  • Toktas A , Ustun D , Tekbas M. Multi-objective design of multi-layer radar absorber using surrogate-based optimization. IEEE Trans Microw Theory Tech. 2019;67:3318–3329. doi: 10.1109/TMTT.2019.2922600
  • Viana FAC , Haftka RT , Watson LT. Efficient global optimization algorithm assisted by multiple surrogate techniques. J Glob Optim. 2013;56:669–689. doi: 10.1007/s10898-012-9892-5
  • Koziel S , Bekasiewicz A. Low-cost surrogate modeling for rapid design optimization of antenna structures. IEEE 11th European Conference and Antennas Propagation; Paris; 2017. p. 1924–1927.
  • Müller J. SOCEMO: surrogate optimization of computationally expensive multiobjective problems. Informs J Comput. 2017;29:581–596. doi: 10.1287/ijoc.2017.0749
  • Koziel S , Bekasiewicz A. Rapid dimension scaling of dual-band antennas using variable-fidelity EM models and inverse surrogates. J Electromagn Waves Appl. 2017;31:297–308. doi: 10.1080/09205071.2016.1276861
  • Ustun D , Toktas A. Translational motion compensation for ISAR images through a multicriteria decision using surrogate-based optimization. IEEE Trans Geosci Remote Sens. 2020;58:4365–4374. doi: 10.1109/TGRS.2019.2963383
  • Krige DG. A statistical approaches to some basic mine valuation problems on the Witwatersrand. J South African Inst Min Metall. 1956;52:119–139.
  • Cressie NAC. Statistics for spatial data. Hoboken : Wiley; 1993.
  • Powell MJD. Radial basis functions for multivariable interpolation: a review. In: Mason JC , MG Cox , editors. Algorithms approx. New York (NY ): Clarendon Press; 1987. p. 143–167.
  • Box GEP , Wilson KB. On the experimental attainment of optimum conditions. J R Stat Soc Ser B. 1951;13:1–45.
  • Simpson T , Toropov V , Balabanov V , et al. Design and analysis of computer experiments in multidisciplinary design optimization: a review of how far we have come – or not. 12th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference; Victoria, Biritish Colombia Canada: American Institute of Aeronautics and Astronautics; 2008.
  • Santner TJ , Williams BJ , Notz WI. The design and analysis of computer experiments. New York (NY ):  Springer New York; 2003.
  • Remcom Inc . XFdtd 3D electromagnetic simulation software. State College ; 2006.
  • Cameron AC , Windmeijer FAG. An R-squared measure of goodness of fit for some common nonlinear regression models. J Econom. 1997;77:329–342. doi: 10.1016/S0304-4076(96)01818-0
  • van der Voet H. Comparing the predictive accuracy of models using a simple randomization test. Chemom Intell Lab Syst. 1994;25:313–323. doi: 10.1016/0169-7439(94)85050-X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.