118
Views
5
CrossRef citations to date
0
Altmetric
Articles

Broadband optical absorption using graphene-wrapped cross-hair/nano-rod combination

&
Pages 305-314 | Received 20 Jun 2020, Accepted 06 Oct 2020, Published online: 21 Oct 2020

References

  • Li S , Chen W , Wang P , et al. Bandwidth-tunable optical passband filter based on graphene–silicon waveguide. Opt Commun. 2018;426:206–211.
  • Zhou Q , Liu P , Liu C , et al. Graphene-based THz absorber with a broad band for tuning the absorption rate and a narrow band for tuning the absorbing frequency. Nanomaterials. 2019;9(8):1138.
  • Wang Z , Zhou M , Lin X , et al. A circuit method to integrate metamaterial and graphene in absorber design. Opt Commun. 2014;329:76–80.
  • Huang H , Xia H , Xie W , et al. Design of broadband graphene-metamaterial absorbers for permittivity sensing at mid-infrared regions. Sci Rep. 2018;8(1):4183.
  • Zhao Y , Huang Q , Cai H , et al. Dual band and tunable perfect absorber based on dual gratings-coupled graphene-dielectric multilayer structures. Opt Express. 2019;27(4):5217–5229.
  • Fang Z , Wang Y , Schlather AE , et al. Active tunable absorption enhancement with graphene nanodisk arrays. Nano Lett. 2014;14(1):299–304.
  • Andryieuski A , Lavrinenko AV. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach. Opt Express. 2013;21(7):9144–9155.
  • Rahmanzadeh M , Rajabalipanah H , Abdolali A. Multilayer graphene-based metasurfaces: robust design method for extremely broadband, wide-angle, and polarization-insensitive terahertz absorbers. Appl Opt. 2018;57(4):959–968.
  • Hajati Y. Tunable broadband multiresonance graphene terahertz sensor. Opt Mater (Amst). 2020;101:109725.
  • Xiong H , Tang M-C , Hong J-S. Analysis of single-layer metamaterial absorber with reflection theory. J Appl Phys. 2015;117(15):154906.
  • Naser-Moghadasi M , Nia AZ , Toolabi M , et al. Microwave metamaterial absorber based on Jerusalem Cross with meandered load for bandwidth enhancement. Optik (Stuttg). 2017;140:515–522.
  • Lim J-H , Ryu Y-H , Kim S-S. Dual-band microwave absorption properties of metamaterial absorber composed of split ring resonator on carbonyl iron powder composites. Electron Mater Lett. 2015;11(3):447–451.
  • Shrekenhamer D , Montoya J , Krishna S , et al. Four-color metamaterial absorber THz spatial light modulator. Adv Opt Mater. 2013;1(12):905–909.
  • Wheeler MS , Aitchison JS , Mojahedi M. Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies. Phys Rev B. 2005;72(19):193103.
  • Jahani S , Jacob Z. All-dielectric metamaterials. Nat Nanotechnol. 2016;11(1):23–36.
  • Decker M , Staude I , Falkner M , et al. High-efficiency dielectric huygens’ surfaces. Adv Opt Mater. 2015;3(6):813–820.
  • Liu H , Yang H , Li Y , et al. Switchable all-dielectric metasurfaces for full-color reflective display. Adv Opt Mater. 2019;7(8):1801639.
  • Moitra P , Slovick BA , li W , et al. Large-scale all-dielectric metamaterial perfect reflectors. ACS Photonics. 2015;2(6):692–698.
  • Du Y , Wu X , Zhu M , et al. Theoretical and experimental research on laser-induced damage of cylindrical subwavelength grating. Opt Express. 2015;23(19):24296–24307.
  • Shankhwar N , et al. High-quality laser cavity based on all-dielectric metasurfaces. Photonics Nanostruct Fundam Appl. 2017;24:18–23.
  • Raad SH , Atlasbaf Z. Tunable optical meta-surface using graphene-coated spherical nanoparticles. AIP Adv. 2019;9(7):075224.
  • Shankhwar N , Kalra Y , Sinha RK. Litao3 based metamaterial perfect absorber for terahertz spectrum. Superlattices Microstruct. 2017;111:754–759.
  • Yang J , Zhu Z , Zhang J , et al. Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure. Sci Rep. 2018;8(1):3239.
  • Raad SH , Atlasbaf Z. Tunable optical absorption using graphene covered core-shell nano-spheres. Electrical Engineering (ICEE), Iranian Conference on 2018. IEEE.
  • Guo C , Zhang J , Xu W , et al. Graphene-based perfect absorption structures in the visible to terahertz band and their optoelectronics applications. Nanomaterials. 2018;8(12):1033.
  • Chou Chau Y-F , Huang HJ , Kooh MRR , et al. Perfect dual-band absorber based on plasmonic effect with the cross-hair/nanorod combination. Nanomaterials. 2020;10(3):493.
  • Riso M , Cuevas M , Depine RA. Tunable plasmonic enhancement of light scattering and absorption in graphene-coated subwavelength wires. J Opt. 2015;17(7):075001.
  • Chirumamilla M , Yang Y , Roberts AS , et al. Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3D titanium nitride nanopillars. Adv Opt Mater. 2017;5(22):1700552.
  • Yang Y , Wang W , Moitra P , et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett. 2014;14(3):1394–1399.
  • Ozel T , Zhang BA , Gao R , et al. Electrochemical deposition of conformal and functional layers on high aspect ratio silicon micro/nanowires. Nano Lett. 2017;17(7):4502–4507.
  • Gao Y , Shadrivov IV. Nonlinear coupling in graphene-coated nanowires. Sci Rep. 2016;6:38924.
  • Hajati M , Hajati Y. Deep subwavelength confinement of mid-infrared plasmon modes by coupling graphene-coated nanowire with a dielectric substrate. Plasmonics. 2018;13(2):403–412.
  • Zhu B , Ren G , Yang Y , et al. Field enhancement and gradient force in the graphene-coated nanowire pairs. Plasmonics. 2015;10(4):839–845.
  • Cai D , Ding L , Wang S , et al. Facile synthesis of ultrathin-shell graphene hollow spheres for high-performance lithium-ion batteries. Electrochim Acta. 2014;139:96–103.
  • Raad SH , Zapata-Rodríguez CJ , Atlasbaf Z. Multi-frequency super-scattering from sub-wavelength graphene-coated nanotubes. J Opt Soc Am B. 2019;36(8):2292–2298.
  • Raad SH , Zapata-Rodríguez CJ , Atlasbaf Z. Graphene-coated resonators with frequency-selective super-scattering and super-cloaking. J Phys D: Appl Phys. 2019;52(49):495101.
  • Wang B-X , Wang L-L , Wang G-Z , et al. Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber. IEEE Photonics Technol Lett. 2014;26(2):111–114.
  • Thongrattanasiri S , Koppens FH , De Abajo FJG. Complete optical absorption in periodically patterned graphene. Phys Rev Lett. 2012;108(4):047401.
  • Cuevas M , Riso MA , Depine RA. Complex frequencies and field distributions of localized surface plasmon modes in graphene-coated subwavelength wires. J Quant Spectrosc Radiat Transfer. 2016;173:26–33.
  • Raad SH , Atlasbaf Z , Zapata-Rodríguez CJ. Multi-frequency near-field enhancement with graphene-coated nano-disk homo-dimers. Opt Express. 2019;27(25):37012–37024.
  • Ke S , Wang B , Huang H , et al. Plasmonic absorption enhancement in periodic cross-shaped graphene arrays. Opt Express. 2015;23(7):8888–8900.
  • Davis TJ , Vernon KC , Gómez DE. Effect of retardation on localized surface plasmon resonances in a metallic nanorod. Opt Express. 2009;17(26):23655–23663.
  • Huang M , Cheng Y , Cheng Z , et al. Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle. Opt Commun. 2018;415:194–201.
  • Huang ML , Cheng Y , Cheng Z , et al. Design of a broadband tunable terahertz metamaterial absorber based on complementary structural graphene. Materials (Basel). 2018;11(4):540.
  • Fardoost A , Vanani FG , Safian R. Design of a multilayer graphene-based ultrawideband terahertz absorber. IEEE Trans Nanotechnol. 2016;16(1):68–74.
  • Ding J , Arigong B , Ren H , et al. Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows. Sci Rep. 2014;4:6128.
  • Forouzmand A , Salary MM , Inampudi S , et al. A tunable multigate indium-tin-oxide-assisted all-dielectric metasurface. Adv Opt Mater. 2018;6(7):1701275.
  • Ju Z , Deng M , Wang J , et al. Reconfigurable multifrequency and wide-angle directional beaming of light from a subwavelength metal slit with graphene metasurfaces. Opt Lett. 2020;45(10):2882–2885.
  • Xiong H , Wu Y-B , Dong J , et al. Ultra-thin and broadband tunable metamaterial graphene absorber. Opt Express. 2018;26(2):1681–1688.
  • Raad SH , Atlasbaf Z. Broadband continuous/discrete spectrum optical absorber using graphene-wrapped fractal oligomers. Opt Express. 2020;28(12):18049–18058.
  • Lai S , Wu Y , Wang J , et al. Optical-transparent flexible broadband absorbers based on the ITO-PET-ITO structure. Opt Mater Express. 2018;8(6):1585–1592.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.