1,093
Views
3
CrossRef citations to date
0
Altmetric
Articles

Localization of a person moving with an unknown character of motion

&
Pages 647-671 | Received 17 Jul 2020, Accepted 10 Nov 2020, Published online: 30 Nov 2020

References

  • Zito D, Pepe D, Mincica M, et al. SoC CMOS UWB pulse radar sensor for contactless respiratory rate monitoring. IEEE Transactions on Biomedical Circuits and Systems. 2011 Dec;5(6):503–510.
  • Kmec M, Helbig M, Herrmann R, et al. M-sequence-based single-chip UWB-radar sensor. In: Ultra-wideband, short-pulse electromagnetics 10. New York: Springer Science + Business Media; 2014. p. 453–461. Available from: https://ui.adsabs.harvard.edu/abs/2014use..book..453K.
  • XETHRU X2; 2019. Available from: https://ui.adsabs.harvard.edu/abs/2014use..book..453K.
  • Huffman C, Ericson C. Through-the-wall sensors for law enforcement: market survey. ManTech Advanced Systems International, Inc.; 2012. Available from: https://www.justnet.org/pdf/00-WallSensorReport-508.pdf.
  • Huffman C, Hayes J, Ericson L. Through-the-wall sensors (TTWS) for law enforcement: test & evaluation. ManTech International Corporation; 2014. Available from: https://www.ncjrs.gov/pdffiles1/nij/grants/245944.pdf.
  • Sachs J, Helbig M, Herrmann R, et al. Remote vital sign detection for rescue, security, and medical care by ultra-wideband pseudo-noise radar. Ad Hoc Netw. 2014;13:42–53. Available from: http://www.sciencedirect.com/science/article/pii/S1570870512001357.
  • Diraco G, Leone A, Siciliano P. A radar-based smart sensor for unobtrusive elderly monitoring in ambient assisted living applications. Biosensors. 2017 Nov;7(4):55.
  • Schires E, Georgiou P, Lande TS. Vital sign monitoring through the back using an UWB impulse radar with body coupled antennas. IEEE Trans Biomed Circuits Syst. 2018 Apr;12(2):292–302.
  • Ahmed S, Khan F, Ghaffar A, et al. Finger-counting-based gesture recognition within cars using impulse radar with convolutional neural network. Sensors. 2019 Mar;19(6):1–14.
  • Khan F, Leem SK, Cho SH. Hand-based gesture recognition for vehicular applications using IR-UWB radar. Sensors. 2017 Apr;17(4):1–18.
  • Choi JW, Yim DH, Cho SH. People counting based on an IR-UWB radar sensor. IEEE Sens J. 2017 Sep;17(17):5717–5727.
  • Anishchenko LN, Alekhin MD, Ivashov SI, et al. Bioradiolocation: methods and applications. Proceedings of The First International Aizu Conference on Biomedical Informatics and Technology (ACBIT 2013). Heidelberger Platz 3, Berlin, Germany, D-14197; 2014. (Communications in Computer and Information Science; 404).
  • Baldi M, Cerri G, Chiaraluce F, et al. Non-invasive UWB sensing of astronauts' breathing activity. Sensors. 2015 Jan;15(1):565–591.
  • Zhang Y, Chen F, Xue H, et al. Detection and identification of multiple stationary human targets via bio-radar based on the cross-correlation method. Sensors. 2016 Nov;16(11):1793.
  • Rovňáková J, Kocur D. Short range tracking of moving persons by UWB sensor network. The 8th European Radar Conference (EuRAD 2011); Oct.; Manchester, UK; 2011. p. 321–324.
  • Kocur D, Fortes J, Švecová M. Multiple moving person tracking by UWB sensors: the effect of mutual shielding persons and methods reducing its impacts. EURASIP J Wirel Commun Netw. 2017 Apr;68:1–15.
  • Švecová M, Kocur D, Demčák J, et al. Through-the-floor localization of a static person by a multistatic UWB radar. Microw Opt Technol Lett. 2019;61(3):825–831.
  • Zetik R, Eschrich M, Jovanoska S, et al. Looking behind a corner using multipath-exploiting UWB radar. IEEE Trans Aerosp Electron Syst. 2015 Jul;51(3):1916–1926.
  • Kocur D, Švecová M, Novák D. UWB radar based localization of a person changing the nature of their motion state. 2018 International Conference on Radar (RADAR); Brisbane, QLD, Australia; Aug.; 2018. p. 1–6.
  • Rovňáková J, Kocur D. UWB radar signal processing for positioning of persons changing their motion activity. Acta Polytech Hungar. 2013;10(3):165–184.
  • Kocur D, Rovňáková J, Švecová M. Through wall tracking of moving targets by M-sequence UWB radar. In: Rudas IJ, Fodor J, Kacprzyk J, editors. Towards intelligent engineering and information technology. Berlin, Heidelberg: Springer; 2009. p. 349–364.
  • Novák D, Švecová M, Kocur D. Multiple person localization based on their vital sign detection using UWB sensor. In: Goudos S, editor. Microwave systems and applications. InTech; London, United Kingdom; 2017.
  • Kocur D, Novák D. UWB sensor based localization of person with the changing nature of his/her movement. Proceedings of the 2nd International Conference on Sensors Engineering and Electronics Instrumental Advances (SEIA'2016); Barcelona, Castelldefels, Spain; IFSA Publishing, S. L.; Sept.; 2016. p. 120–122.
  • Sachs J. Handbook of ultra-wideband short-range sensing: theory, sensors, applications. Hoboken, NJ: John Wiley & Sons; 2013.
  • Corrigan M, Walton A, Weihong N, et al. Automatic UWB clusters identification. IEEE Radio and Wireless Symposium;San Diego, California; 2009 Jan. p. 376–379.
  • Saleh A, Valenzuela R. A statistical model for indoor multipath propagation. IEEE J Sel Areas Commun. 1987;5:128–137.
  • Lee M, Lee J. Statistical modeling of indirect paths for UWB sensors in an indoor environment. Sensors. 2017;17(43):1–16.
  • Rovňáková J, Kocur D. TOA estimation and data association for through-wall tracking of moving targets. EURASIP J Wirel Commun Netw. 2010 Aug;2010:1–11.
  • Rovňáková J. Complete signal processing for through wall tracking of moving targets. LAP LAMBERT Academic Publishing, Germany;  2010.
  • Blackman S, Popoli R. Design and analysis of modern tracking systems. Boston, London: Artech House; 1999.
  • Zetik R, Crabbe S, Krajnak J, et al. Detection and localization of persons behind obstacles using M-sequence through-the-wall radar. Proc. SPIE 6201, Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense V, Orlando, FL, USA; 62010I; May; 2006.
  • Kocur D, Kazimir P, Hoffmann J. M-sequence UWB sensor signal degradation by narrowband signal. 2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA); Pardubice, Czech Republic; 2015. p. 321–325.
  • Kocur D, Švecová M. Signal processing for monitoring of static persons using UWB sensors: a survey. 2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC); Nanjing, China; Vol. 1; May; 2019. p. 1–3.
  • Kocur D, Švecová M, Zetik M. Basic signal processing principles for monitoring of persons using UWB sensors – an overview. Acta Electrotech Inform. 2019 Apr;19(2):9–15.
  • Lazaro A, Girbau D, Villarino R. Techniques for clutter suppression in the presence of body movements during the detection of respiratory activity through UWB radars. Sensors. 2014;14(2):2595–2618.
  • Lazaro A, Girbau D, Villarino R. Analysis of vital signs monitoring using an IR – UWB radar. Prog Electromagn Res. 2010;100:265–284.
  • Proakis J, Manolakis D. Digital signal processing: principles, algorithms, and applications. 3rd ed.Upper Saddle River, New Jersey, USA: Prentice Hall, Inc.; 1995.
  • Skolnik M. Radar handbook. 2nd ed. McGraw-Hill Professional, USA; 1990.
  • Nag S, Barnes M. A moving target detection filter for an ultra-wideband radar. Proceedings of the 2003 IEEE Radar Conference (Cat. No. 03CH37474); Huntsville, AL, USA; 2003. p. 147–153.
  • Nag S, Fluhler H, Barnes M. Preliminary interferometric images of moving targets obtained using a time-modulated ultra-wide band through-wall penetration radar. Proceedings of the 2001 IEEE Radar Conference (Cat. No.01CH37200); Atlanta, GA, USA; 2001. p. 64–69.
  • Dutta PK, Arora AK, Bibyk SB. Towards radar-enabled sensor networks. 2006 5th International Conference on Information Processing in Sensor Networks; Nashville, TN, USA; 2006. p. 467–474.
  • Rovňáková J, Kocur D. Compensation of wall effect for through wall tracking of moving targets. Radioengineering. 2009 Jun;18(2):189–195.
  • Thanh NT, van Kempen L, Savelyev TG, et al. Comparison of basic inversion techniques for through-wall imaging using UWB radar. 2008 European Radar Conference; Amsterdam, Netherlands; Oct; 2008. p. 140–143.
  • Švecová M, Kocur D, Zetik R. Object localization using round trip propagation time measurements. 2008 18th International Conference Radioelektronika; Prague, Czech Republic; 2008. p. 1–4.
  • Nezirovic A. Trapped-victim detection in post-disaster scenarios using ultra-wideband radar [dissertation]. Netherlands: Delft University of Technology; 2010.
  • Nezirovic A, Yarovoy AG, Ligthart LP. Signal processing for improved detection of trapped victims using uwb radar. IEEE Trans Geosci Remote Sens. 2010;48(4):2005–2014.
  • Proakis J, Manolakis D. Digital signal processing. Pearson Prentice Hall; 2007. Prentice Hall international editions; Available from: https://books.google.sk/books?id=H_5SAAAAMAAJ.
  • Rohling H. Radar CFAR thresholding in clutter and multiple target situations. IEEE Trans Aerosp Electron Syst. 1983;AES-19:608–621.
  • m:explore: M-Sequence System; Accessed: 2019-09-10. Available from: https://www.ilmsens.com/products/m-explore/.
  • DRH10 Double ridget wavequide horn antenna; RF spin, s.r.o., 2019. Accessed: 2019-09-10. Available from: https://www.rfspin.cz/en/antennas/measurement-antennas/drh10.
  • Kirubarajan T, Bar-Shalom Y. Kalman filter versus IMM estimator: when do we need the latter?IEEE Trans Aerosp Electron Syst. 2003 Oct;39(4):1452–1457.
  • Jiang S, Skibniewski M, Yuan Y, et al. Ultra-wide band applications in industry: a critical review. J Civil Eng Manag. 2011;17(3):437–444.
  • Galajda P, Galajdova A, Slovak S, et al. Robot vision ultra-wideband wireless sensor in non-cooperative industrial environments. Int J Adv Robot Syst. 2018;15(4):1–12.