112
Views
0
CrossRef citations to date
0
Altmetric
Articles

Design of the interaction cavity extending to the nonlinear taper for a 10 kw, W-band gyrotron

&
Pages 902-922 | Received 16 Sep 2020, Accepted 13 Dec 2020, Published online: 23 Dec 2020

References

  • Gilmour AS. Klystrons, traveling wave tubes, magnetrons, crossed-field amplifiers, and gyrotrons. Boston: Artech House; 2011.
  • Kartikeyan MV, Boris E, Thumm MKA. Gyrotrons: high power microwave and millimeter wave technology. Heidelberg: Springer-Verlag; 2004.
  • Thumm MKA. State-of-the-art of high power gyro- devices and free electron masers, Update 2016. Karlsruhe: KIT; 2017.
  • Nusinovich GS. Introduction to the physics of gyrotron. Baltimore, Maryland: JHU; 2004.
  • Edgecombe CJ. Gyrotron oscillators: their principles and practice. London: Taylor & Francis Ltd; 1993.
  • McAulay AD. Military laser technology for defense. Hoboken (NJ): John Wiley & Sons; 2011.
  • Song HH, McDermott DB, Hirata Y. Development of a W-band TE01 gyrotron traveling-wave amplifier (Gyro-TWT) for advanced radar applications. MURI, Mirowave Vacuum Electronics. 2004;4:1–30.
  • Karmakar S, Sudhakar R, Mudiganti J, et al. Electrical and thermal design of a W-band gyrotron interaction cavity. IEEE Trans Plasma Sci. 2019;47(7):3155–3159.
  • Spraggle P, Derobot AT. The linear and self-consistent nonlinear theory of the electron cyclotron maser instability. IEEE Trans Microwave Theory Tech. 1977;25:528–544.
  • Fliflet AW, Read ME, Chu KR, et al. A self consistent field theory for gyrotron oscillator. Int J Electron. 1982;53:505–521.
  • Ganguly AK, Ahn S. Self consistent large signal theory of the gyrotron traveling wave amplifier. Int J Electron. 1982;53:505–521.
  • Fliflet AW, Read ME. Use of Weakly irregular waveguide theory to Calculate eigen-frequencies, Q values, and RF field function for gyrotron Oscillators. Int J Electron. 1981;51:475–484.
  • Caplan M, Lin AT, Chu KR. A study of the saturated output of a TE01 gyrotron using an electromagnetic finite size particle code. Int J Electron. 1982;53:659–671.
  • Dumbrajs O, Shenggang L. Kinetic theory of electron-cyclotron resonance masers with asymmetry of the electron beam in a cavity. IEEE Trans Plasma Sci. 1992;20(3):126–132.
  • Lindsay PA. Gyrotrons (electron Cyclotron Masers): different mathematical Models. IEEE J Quantum Electron. Aug 1981;17(8):321–326.
  • Granatstein VL. Spatial and temporal coherence of a 35 GHz gyromontron using the TE01 circular mode. IEEE Trans Microwave Theory Techn. 1980;28:875–878.
  • Botton M, Antonsen Jr TM. MAGY: a time-dependent code for simulation of slow and fast wave microwave sources. IEEE Trans Plasma Sci. 1998;26(3):882–892.
  • Karmakar S, Jain PK, Kumar L, et al. A simple algorithm for large signal analysis of a Gyro-TWT. IEEE Int Vac Electron Conf. 2007, pp. 171–172.
  • Bhanu Naidu V, Kesari V, Karmakar S, et al. Particle in cell simulation of a tapered cavity for a millimeter wave gyrotron. IEEE Trans Plasma Sci. 2018;46(7):2460–2464.
  • Anderson JP. Experimental study of a 1.5-MW, 110-GHz gyrotron oscillator. Massachusetts: Massachusetts Institute of Technology; 2005, pp. 171.
  • Singh A, Chandra BR, Jain PK. Multimode behavior of a 42 GHz, 200 kW gyrotron. Prog Electromagn Res B. 2012;42:75–91.
  • Jeevan M, Kesari V, Karmakar S, et al. Simulation of higher order modes in a tapered circular cavity for a millimeter-wave gyrotron. Proceedings of the 9th International Conference on Microwaves, Antenna, Propagation and Remote Sensing, ICMARS-2013; Dec. 2013; Jodhpur, India.
  • Scarborough JB. Numerical mathematical analysis. New Delhi: Oxford & IBH Publishers.
  • McLachlan NW. Bessel functions for engineers. London: Oxford University Press; 1934.
  • Kolosov SV, Kuraev AA. Nonlinear radiation and converting the longitudinal energy of a relativistic electron beam in a strong rotating electromagnetic fields. Radiotechn Electron. 1973;18(12):2558–2566.
  • Kolosov SV, Kurayev AA. Nonlinear theory of gyroresonance devices with the irregular electrodynamic system. Electromagn Waves Electron Sys. 1998;3(1):35–44.
  • Kurayev AA, Kolosov SV, Stekolnikov AF, et al. TWT-gyrotrons: non-linear theory, optimization and analysis. Int J Electron. 1988;65(3):437–462.
  • Kurayev AA, Kolosov SV, Slepyan AY, et al. Gyrotrons: relativistic case, E and H modes, output converter desiqn. Int J Electron. 1992;72(5):5–6.
  • Batura MP, Kuraev AA, Sinitsyn AK. Modeling and optimization of high-power microwave electronic devices. Internal Report of BSUIR; 2006. p. 275.
  • User Manual of software Gyro-K.
  • Shahana K, Kesari V, Karmakar S, et al. Simulation of TE6,2 to Gaussian mode converter for a 95 GHz gyrotron. IEEE Trans Plasma Sci. 2018;46(1):84–89.
  • Adya S, Karmakar S, Kartikeyan MV, et al. Investigation on W-band second harmonic gyrotron for 50/100 kW operation. IEEE Trans Plasma Sci. 2020;48(12):4127–4133.
  • User manual of software FloEFD.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.