378
Views
0
CrossRef citations to date
0
Altmetric
Articles

Multi-directional cloaking structure design using topology optimization

, , & ORCID Icon
Pages 1008-1019 | Received 16 Aug 2020, Accepted 16 Dec 2020, Published online: 29 Dec 2020

References

  • Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science. 2006;312(5781):1780–1782.
  • Leonhardt U. Optical conformal mapping. Science. 2006;312(5781):1777–1780.
  • Schurig D, Mock JJ, Justice BJ, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science. 2006;314(5801):977–980.
  • Cummer SA, Popa B-I, Schurig D, et al. Full-wave simulations of electromagnetic cloaking structures. Phys Rev E. 2006;74:036621.
  • Cai W, Chettiar UK, Kildishev AV, et al. Optical cloaking with metamaterials. Nat Photonics. 2007;1:224–227.
  • Zhang P, Jin Y, He S. Cloaking an object on a dielectric half-space. Opt Express. 2008;16(5):3161–3166.
  • Hsu LY, Lepetit T, Kanté B. Extremely thin dielectric metasurface for carpet cloaking. Prog Electromagn Res. 2015;152:33–40.
  • Rahm M, Schurig D, Roberts DA, et al. Design of electromagnetic cloaks and concentrators using form invariant coordinate transformations of Maxwell’s equations. Photonics Nanostruct. 2008;6(1):87–95.
  • Liu R, Ji C, Mock JJ, et al. Broadband ground-plane cloak. Science. 2009;323(5912):366–369.
  • Valentine J, Li J, Zentgraft T, et al. An optical cloak made of dielectrics. Nat Mater. 2009;8:568–571.
  • Ergin T, Stenger N, Brenner P, et al. Three-dimensional invisibility cloak at optical wavelengths. Science. 2010;328(5976):337–339.
  • Wang X, Chen F, Hook S, et al. Microwave cloaking by all-dielectric metamaterials. 2011 IEEE International Symposium on Antennas and Propagation; 2011 Jul 3–8; Spokane (WA), USA.
  • Landy N, Smith DR. A full-parameter unidirectional metamaterial cloak for microwaves. Nat Mater. 2012;12:25–28.
  • Islam SS, Hasan MM, Faruque MRI. A new metamaterial-based wideband rectangular invisibility cloak. Appl Phys A Mater Sci Process. 2018;124:160.
  • Edwards B, Alù A, Silveirinha MG, et al. Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. Phys Rev Lett. 2009;103:153901.
  • Vehmas J, Alitalo P, Tretyakov SA. Experimental demonstration of antenna blockage reduction with a transmission-line cloak. IET Microw Antennas Propag. 2012;6(7):830–834.
  • Silveirinha MG, Alù A, Engheta N. Parallel-plate metamaterials for cloaking structures. Phys Rev E. 2007;75:036603.
  • Andkjær J, Sigmund O. Topology optimized low-contrast all-dielectric optical cloak. Appl Phys Lett. 2011;98:021112.
  • Andkjær J, Mortensen NA, Sigmund O. Towards all-dielectric, polarization-independent optical cloaks. Appl Phys Lett. 2012;100:101106.
  • Vial B, Hao Y. Topology optimized all-dielectric cloak: design, performances and modal picture of the invisibility effect. Opt Express. 2015;23(18):23551–23560.
  • Lan L, Sun F, Liu Y, et al. Experimentally demonstrated a unidirectional electromagnetic cloak designed by topology optimization. Appl Phys Lett. 2013;103:121113.
  • Yamada T, Watanabe H, Fujii G, et al. Topology optimization for a dielectric optical cloak based on an exact level set approach. IEEE Trans Magn. 2013;49(5):2073–2076.
  • Otomori M, Yamada T, Andkjær J, et al. Level set-based topology optimization for the design of an electromagnetic cloak with ferrite material. IEEE Trans Magn. 2013;49(5):2081–2084.
  • Fujii G, Takahashi M, Akimoto Y. CMA-ES-based structural topology optimization using a level set boundary expression – application to optical and carpet cloaks. Comput Meth Appl Mech Eng. 2018;332:624–643.
  • Kishimoto N, Izui K, Nishiwaki S, et al. Optimal design of electromagnetic cloaks with multiple dielectric materials by topology optimization. Appl Phys Lett. 2017;110:201104.
  • Bendsøe MP, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Comput Meth Appl Mech Eng. 1988;71:197–224.
  • Bendsøe MP, Sigmund O. Topology optimization: theory, methods and applications. New York (NY): Springer-Verlag; 2003.
  • Yamada T, Izui K, Nishiwaki S, et al. A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput Meth Appl Mech Eng. 2010;199(45–48):2876–2891.
  • Takezawa A, Nishiwaki S, Kitamura M. Shape and topology optimization based on the phase field method and sensitivity analysis. J Comput Phys. 2010;229(7):2697–2718.
  • Choi JS, Yamada T, Izui K, et al. Topology optimizaion using a reaction-diffusion equation. Comput Meth Appl Mech Eng. 2011;200(29–32):2407–2420.
  • Go J, Seong HK, Park J, et al. Design of microwave collimators for beam splitting and focusing using dual dielectrics. IEEE Antennas Wirel Propag Lett. 2018;17(9):1669–1672.
  • Lee D, Seong HK, Park J, et al. Design of broadband dielectric collimators with the phase-field design method for applications in the X-band range. IEEE Antennas Wirel Propag Lett. 2019;18(6):1258–1262.
  • Kim H, Park J, Seo I, et al. Two-dimensional dielectric collimator design and its experimental verification for microwave beam focusing. Appl Phys Lett. 2016;109:151902.
  • COMSOL Multiphysics 3.5a. Stockholm: COMSOL AB, 2008.
  • Zhang W, Kang Z. Robust shape and topology optimization considering geometric uncertainties with stochastic level set perturbation. Int J Numer Methods Eng. 2017;110(1):31–56.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.