420
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Simulated and experimental verification of the microwave dual-band metamaterial perfect absorber based on square patch with a 450 diagonal slot structure

, ORCID Icon, &
Pages 1541-1552 | Received 26 Dec 2020, Accepted 16 Mar 2021, Published online: 26 Mar 2021

References

  • Lima UR, Nasar MC, Nasar RS, et al. Ni-Zn nanoferrite for radar-absorbing material. J Magn Magn Mater. 2008;320(10):1666–1670.
  • Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett. 2000;85(18):3966–3969.
  • Lil WJ, Du H, et al. A band enhanced metamaterial absorber based on E-shaped all-dielectric resonators. AIP Adv. 2015;5(1):017147. doi:10.1063/1.4907050.
  • Al-badri KSL. Electromagnetic broad band absorber based on metamaterial and lumped resistance. J King Saud Univ Sci. 2020;32(1):501–506.
  • Al-Badri KS, Cinar A, Kose U, et al. Monochromatic tuning of absorption strength based on angle-dependent closed-ring resonator-type metamaterial absorber. IEEE Antennas Wirel Propag Lett. 2017;16:1060–1063.
  • Tang Y, He L, Xu J, et al. Single-peak-regulation and wide-angle dual-band metamaterial absorber broadbased on hollow-cross and solid-cross resonators. EPJ Appl Phys. 2020;91(3):30901.
  • Wang BX, He Y, Lou P, et al. Penta-band terahertz light absorber using five localized resonance responses of three patterned resonators. Results Phys. 2020;16:102930.
  • Abdulkarim YI, Deng L, Luo H, et al. Design and study of a metamaterial based sensor for the application of liquid chemicals detection. J Mater Res Technol. 2020;9(5):10291–10304.
  • Schurig D, Mock JJ, Justice BJ, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science. 2006;314(5801):977–980.
  • Hameed MH, Shawkat SA, Al-badri KSL. (2020, March). Multi bands metamaterial absorber optimized by genetic algorithm in microwave regime. In AIP Conference Proceedings (Vol. 2213, No. 1, p. 020055). AIP Publishing LLC.
  • Wang BX, Tang C, Niu Q, et al. A broadband terahertz metamaterial absorber enabled by the simple design of a rectangular-shaped resonator with an elongated slot. NANOHL Adv. 2019;1(9):3621–3625.
  • Withayachumnankul W, Fumeaux C, ve Abbott D. Compact electric-LC resonators for metamaterials. Opt Express. 2010;18(25): 25912–25921.
  • Al-Badri KSL, Karacan N, Kucukoner EM, et al. Sliding planar conjoined cut-wire-pairs: a novel approach for splitting and controlling the absorption spectra. J Appl Phys. 2018;124(10):105103.
  • Al-badri KSL. Multi band metamaterials absorber for stealth applications. L St Telecomm Rev. 2019;11(1):133–144.
  • Landy NI, Sajuyigbe S, Mock JJ, et al. Perfect metamaterial absorber. Phys Rev Lett. 2008;100:20.
  • Muhammad FQ, Al-Badri KSL. Design and analysis quad-band patch antenna for wireless communication. J Pure Appl Sci Technol. 2020;2(1):25–34.
  • Chen HT, Padilla WJ, Cich MJ, et al. A metamaterial solid-state terahertz phase modulator. Nat Photonics. 2009;3(3):148–151.
  • Ginn J, Shelton D, Krenz P, et al. Altering İnfrared metamaterial performance through metal resonance damping. J App Phys. 2009;105(7): 074304.
  • Sahu A, Yadav R, Kumar T, et al. (2020). Design and analysis of triple split ring resonator-based polarization-insensitive, multiband metamaterial absorber. In International Conference on Intelligent Computing and Smart Communication 2019 (pp. 523–531). Springer, Singapore.
  • Hameed MH, Shawkat SA, Al-badri KSL. (2020, March). Multi bands metamaterial absorber optimized by genetic algorithm in microwave regime. In AIP Conference Proceedings (Vol. 2213, No. 1, p. 020055). AIP Publishing LLC.
  • Boopathi RR, Pandey SK. Metamaterial-inspired printed UWB antenna for short range RADAR applications. Microw Opt Technol Lett. 2017;59(7):1600–1604.
  • Shawkat SA, Al-badri KSL, Al_Barazanchi I. Three band absorber design and optimization by neural network algorithm. J. Phys: Conf Ser. 2020;1530:012129.
  • Li SJ, Wu PX, Xu HX, et al. Ultra-wideband and polarization-insensitive perfect absorber using multilayer metamaterials, lumped resistors, and strong coupling effects. Nanoscale Res Lett. 2018;13(1):1–13.
  • Li SJ, Li YB, Li H, et al. A thin self-feeding Janus metasurface for manipulating incident waves and emitting radiation waves simultaneously. Ann Phys. 2020;532(5):2000020.
  • Li SJ, Li YB, Zhang L, et al. Programmable controls to scattering properties of a radiation array. Laser Photon Rev. 2021;15(2):2000449.
  • Li SJ, Cui TJ, Li YB, et al. Multifunctional and multiband fractal metasurface based on inter-metamolecular coupling interaction. Adv Theory Simul. 2019;2(8):1900105.
  • Wang BX, Wang GZ, Sang T. Simple design of novel triple-band terahertz metamaterial absorber for sensing application. J Phys D Appl Phys. 2016;49(16):165307.
  • Park JW, Van Tuong P, Rhee JY, et al. Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Opt Express. 2013;21(8):9691–9702.
  • Chen X, Grzegorczyk TM, Wu BI, et al. Robust method to retrieve the constitutive effective parameters of metamaterials. Phys Rev. 2004;70(1):016608.
  • Abdulkarim YI, Deng L, Luo H, et al. Electromagnetic simulations of polarization-insensitive and wide-angle multiband metamaterial absorber by incorporating double asterisk resonator. Bull Mater Sci. 2020;43:116.
  • Wang BX. Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs. IEEE J Sel Top Quantum Electron. 2016;23(4):1–7.
  • Wang BX, He Y, Lou P, et al. Design of a dual-band terahertz metamaterial absorber using two identical square patches for sensing application. NANOHL Adv. 2020;2(2):763–769.
  • Al-Badri KSL. Very high Q-factor based on g-shaped resonator type metamaterial absorber. Ibn AL-Haitham J Pure Appl. Sci. 2018: 159–166.
  • Dincer F, Karaaslan M, Unal E, et al. Design of polarization- and incidentangle-independent perfect metamaterial absorber with interference theory. J Electron Mater. 2014;43:3949–3953.
  • Cheng Y, Yang H. Design, simulation, and measurement of metamaterial absorber. Microw Opt Technol Lett. 2010;52(8):1922–1922.
  • Li M-H, Yang H-L, Lin H, et al. Design, measurement, and characterization of dualband left-handed metamaterials with combined elements. Microwave Opt Technol Lett. 2013;55:493–497.
  • Lee HM, Lee H. A dual-band metamaterial absorber based with resonantmagnetic structures. Prog Electromagnet Res. 2012;33:1–12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.