190
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Multi-scale feature vector reconstruction for aircraft classification using high range resolution radar signatures

, ORCID Icon, , &
Pages 1843-1862 | Received 14 Oct 2020, Accepted 25 Apr 2021, Published online: 17 May 2021

References

  • Mian P, Jie J, Zhu L, et al. Radar HRRP recognition based on discriminant deep autoencoders with small training data size. Electron Lett. 2016;52(20):1725–1727.
  • Feng B, Chen B, Liu H. Radar HRRP target recognition with deep networks. Pattern Recognit. 2017;61:379–393.
  • Pan M, Jiang J, Kong Q, et al. Radar HRRP target recognition based on t-SNE segmentation and discriminant deep belief network. IEEE Geosci Remote Sens Lett. 2017;14(9):1609–1613.
  • Li HJ, Yang H. Using range profiles as feature vectors to identify aerospace objects. IIEEE Trans Antennas Propag. 1993;41(3):261–268.
  • Li HJ, Wang YD, Wang LH. Matching score properties between range profiles of high resolution radar targets. IEEE Trans Antennas Propag. 1996;44(4):444–452.
  • Zhai S, Jiang T. Sparse representation-based feature extraction combined with support vector machine for sense-through-foliage target detection and recognition. IET Signal Process. 2013;8(5):458–466.
  • Guo Y, Xiao H, Kan Y, et al. Learning using privileged information from HRRP based radar target recognition. IET Signal Process. 2017;12(2):188–197.
  • Li L, Liu H, Jiu B, et al. Polarization radar HRRP recognition based on kernel methods. International Symposium on Neural Networks, Berlin, Germany; May 2009; p. 304–311.
  • Guo Y, Xiao H, Fan H, et al. Multiclass multiple kernel learning for HRRP-based radar target recognition. Second International Workshop on Pattern Recognition, Singapore; June 2017; 1044306.
  • Kim DH, Seo DK, Kim HT. Efficient radar target recognition using the MUSIC algorithm and invariant features. IEEE Trans Antennas Propag. 2002;50(3):325–337.
  • Lee SJ, Jeong SJ, Yang E, et al. Target identification using bistatic high-resolution range profiles. IET Radar Sonar Navigation. 2016;11(3):498–504.
  • Zhang XD, Shi Y, Bao Z. A new feature vector using selected bispectra for signal classification with application in radar target recognition. IEEE Trans Signal Process. 2001;49(9):1875–1885.
  • Du L, Liu H, Bao Z, et al. Radar HRRP target recognition based on higher order spectra. IEEE Trans Antennas Propag. 2005;53(7):2359–2368.
  • Liu J, Fang N, Xie YJ, et al. Radar target classification using support vector machine and subspace methods. IET Radar Sonar Navig. 2015;9(6):632–640.
  • Turhansayan G. Real time electromagnetic target classification using a novel feature extraction technique with PCA based fusion. IEEE Trans Antennas Propag. 2005;53(2):766–776.
  • Dermoune A, Wei T. FastICA algorithm: five criteria for the optimal choice of the nonlinearity function. IEEE Trans Signal Process. 2013;61(8):2078–2087.
  • Tao M, Zhou F, Liu Y, et al. Tensorial in dependent component analysis-based feature extraction for polarimetric SAR data classification. IEEE Trans Geosci Remote Sensing. 2015;53(5):2481–2495.
  • Feng B, Du L, Liu HW, et al. Radar HRRP target recognition based on K-SVD algorithm. 2011 IEEE International conference on Radar, ChengDu, China; October 2011; p. 642-645.
  • Liao X, Runkle P, Carin L. Identification of ground targets from sequential high-range-resolution radar signatures. IEEE Trans Aerosp Electron Syst. 2002;38(4):1230–1242.
  • Zhu F, Zhang XD, Hu YF, et al. Nonstationary hidden markov models for for multi-aspect discriminative feature extraction from radar targets. IEEE Trans Signal Process. 2007;55(5):2203–2214.
  • Nilufar S, Ray N, Zhang H. Object detection with DOG scale-space: A multiple kernel learning approach. IEEE Trans Image Process. 2012;21(8):3744–3756.
  • Tang H, Shen L, Qi YF, et al. A multiscale latent dirichlet allocation model for object-oriented clustering of VHR panchromatic satellite images. IEEE Trans Geosci Remote Sensing. 2013;51(3):1680–1692.
  • Lindeberg T. Scale space theory: a basic tool for analysing structures at different scales. J Appl Stat. 1994;21(2):224–270.
  • Xu H, Lu C, Berendt R, et al. Automatic nuclei detection based on generalized laplacian of Gaussian filters. IEEE J Biomed Health Inform. 2017;21(3):826–837.
  • Liu J, Fang N, Xie YJ, et al. Scale-space theory based multi-scale features for aircraft classification using HRRP. Electron Lett. 2016;52(6):475–477.
  • Liu J, Fang N, Xie YJ, et al. Multi-scale feature based fuzzy support vector machine classification using radar range profiles. IET Radar Sonar Navig. 2016;10(2):370–378.
  • Chen XH, Chen SC, Xue H. Universum linear discriminant analysis. Electron Lett. 2012;48(22):1407–1409.
  • Lee KC, Ou JS, Fang MC. Application of SVD noise-reduction technique to PCA based radar target recognition. Prog Electromagn Res. 2008;81:447–459.
  • Fioranelli F, Ritchie M, Griffiths H. Classification of unarmed/armed personnel using the NetRAD multistatic radar for micro-Doppler and singular value decomposition features. IEEE Trans Geosci Remote Sensing. 2015;12(9):1933–1937.
  • Lowe DG. Object recognition from local scale-invariant features. International Conference on Computer Vision, Kerkyra, Greece; September 1999; 99(2): p. 1150–1157.
  • Mikolajczyk K, Schmid C. Scale affine invariant interest point detectors. Int J Comput Vis. 2004;60(1):63–86.
  • Lindeberg T. Scale selection properties of generalized scale space interest point detectors. J Math Imaging Vis. 2013;46(2):177–210.
  • Weinberg GV, Glenny VG. Optimal Rayleigh approximation of the K-distribution via the Kullback-Leibler divergence. IEEE Signal Process Lett. 2016;23(8):1067–1070.
  • Molchanov P, Egiazarian K, Astola J, et al. Classification of aircraft using micro-Doppler bicoherence-based features. IEEE Trans Aerosp Electron Syst. 2014;50(2):1455–1467.
  • Fu JS, Liao K, Yang W. Radar HRRP target recognition using multi-KFD-based LDA algorithm. Prog Electromagn Res. 2012;30:15–26.
  • Du Q, Ren H. Real-time constrained linear discriminant analysis to target detection and classification in hyperspectral imagery. Pattern Recognit. 2003;36(1):1–12.
  • Fauvel M, Chanussot J, Benediktsson JA. Decision fusion for the classification of urban remote sensing images. IEEE Trans Geosci Remote Sensing. 2006;44(10):2828–2838.
  • Fisher RA. The statistical utilization of multiple measurements. Ann Hum Genet. 1938;8(4):376–386.
  • Konstantinides K, Natarajan B, Yovanof GS. Noise estimation and filtering using block-based singular value decomposition. IEEE Trans Image Process. 1997;6(3):479–483.
  • Liu J, Fang N, Wang BF, et al. An efficient ray tracing method for RCS prediction in GRECO. MicrowOpt Technol Lett. 2013;55(3):586–589.
  • Liu J, Wang BF. Dynamic aircraft identification using HRRP under attitude perturbation interference. J Electromagn Waves Appl. 2019;33(7):929–945.
  • Chang CC, Lin CJ. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol. 2011;2(3):27.
  • Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313(5786):504–507.
  • Modarresi K. Unsupervised feature extraction using singular value decomposition. Procedia Comput Sci. 2015;51:2417–2425.
  • Willems PR, Lang B, Mel CV. Computing the bidiagonal SVD using multiple relatively robust representations. SIAM J Matrix Anal Appl. 2006;28(4):907–926.
  • Großer B, Lang B. An O(n(2)) algorithm for the bidiagonal SVD. Linear Alg App. 2003;358:45–70. DOI:10.1016/S0024-3795(01)00398-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.