77
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Multi-layered parallel plate waveguide with electrically and magnetically biased graphene sheets

&
Pages 2335-2348 | Received 25 Feb 2021, Accepted 19 Jun 2021, Published online: 30 Jul 2021

References

  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–669.
  • Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6:183–191.
  • Novoselov KS, Jiang D, Schedin F, et al. Two dimensional atomic crystals. Proc Natl Acad Sci USA. 2005;102:10451–10453.
  • Novoselov KS, Geim AK, Morozov SV, et al. Two-dimensional gas of massless dirac fermions in graphene. Nat Lett. 2005;438(7065):197–200.
  • Decker R, Wang Y, Brar VW, et al. Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett. 2011;11:2291–2295.
  • Kim KS, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nat Lett. 2009;457(7230):706–710.
  • Hanson GW, Yakovlev AB, Mafi A. Excitation of discrete and continues spectrum for a surface conductivity model of graphene. J Appl Phys. 2011;110:Article ID 114305.
  • Neculoiu D, Deligeorgis G, Dragoman M, et al. Electromagnetic propagation in graphene in the mm-wave frequency range. In: Proceedings of the 40th European Microwave Integrated Circuits Conference; Paris; 2010. p. 1619–1622.
  • Vakil A, Engheta N. Transformation optics using graphene. Science. 2011;332(6035):1291–1294.
  • Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics. Nat Photonics. 2010;4:611–622.
  • Skulason HS, Nguyen HV, Guermoune A, et al. 110 GHz measurement of large-area graphene integrated in low-loss microwave structures. Appl Phys Lett. 2011;99:Article ID 153504.
  • Dragoman M, Neculoiu D, Cismaru A, et al. Coplanar waveguide on graphene in the range 40 MHz–110 GHz. Appl Phys Lett. 2011;99:Article ID 033112.
  • Hanson GW. Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys. 2008;103:Article ID 064302.
  • Hanson GW. Quasi-transverse electromagnetic, modes supported by a graphene parallel-plate waveguide. J Appl Phys. 2008;104:Article ID 084314.
  • Gusynin VP, Sharapov SG, Carbotte JP. Magneto-optical conductivity in graphene. J Phys Condens Matter. 2007;19:Article ID 026222.
  • Gusynin VP, Sharapov SG. Transport of Dirac quasiparticles in graphene: hall and optical conductivities. Phys Rev B. 2006;73:Article ID 245411.
  • Ali Malek S, Charlebois S, Deslandes D. Hybrid modes propagation inside parallel plate waveguide using anisotropic graphene plate. In: EEE/MTT-S International Microwave Symposium Digest; 2012. p. 1–3.
  • Crassee I, Levallois J, Walter AL, et al. Giant faraday rotation in single- and multilayer graphene. Nat Phys. 2011;7:48–51.
  • Zhang Y, Tan YW, Stormer HL, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nat Lett. 2005;438(7065):201–204.
  • Malekabadi A, Charlebois SA, Deslandes D. Parallel plate waveguide with anisotropic graphene plates: effect of electric and magnetic biases. J Appl Phys. 2013;113(11):Article ID 113708.
  • Gusynin VP, Sharapov SG, Carbotte JP. Unusual microwave response of Dirac quasiparticles in graphene. Phys Rev Lett. 2006;96:Article ID 256802.
  • Evelt M, Ochoa H, Dzyapko O, et al. Chiral charge pumping in graphene deposited on a magnetic insulator. Phys Rev B. 2017;95(2):Article ID 024408.
  • Pozar DM. Microwave engineering. 4th ed. Wiley; 2011.
  • Deligeorgis G, Dragoman M, Neculoiu D, et al. Microwave propagation in graphene. Appl Phys Lett. 2009;95:Article ID 073107.
  • Hanson GW. Dyadic Green's functions for an anisotropic, non-local model of biased graphene. IEEE Trans Antennas Propag. 2008;56:747–757.
  • Harrington RF. Time-harmonic electromagnetic fields. New York: McGraw-Hill; 1961. Chap. 7.
  • Sadovnikov AV, Beginin EN, Sheshukova SE, et al. Route toward semiconductor magnonics: light-induced spin-wave nonreciprocity in a YIG/GaAs structure. Phys Rev B. 2019;99(5):Article ID 054424.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.