345
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of microwave metamaterial-inspired sensors with multiple-band reactivity for mercury contamination detection

& ORCID Icon
Pages 520-541 | Received 31 May 2021, Accepted 25 Aug 2021, Published online: 05 Sep 2021

References

  • Senese F. Why is mercury a liquid at STP? General Chemistry Online at Frostburg State University. Available from: http://antoine.frostburg.edu/chem/senese/101/inorganic/faq/why-is-mercury-liquid.shtml.
  • Pacyna EG, Pacyna JM, Sundseth K, et al. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmos Environ. 2010;44:2487–2499.
  • Mahbub KR, Krishnan K, Naidu R, et al. Mercury toxicity to terrestrial biota. Ecol Indic. 2017;74:451–462.
  • Rustagi N, Singh R. Mercury and health care. Indian J Occup Environ Med. 2010;14:45–48.
  • Bernhoft RA. Mercury toxicity and treatment: a review of the literature. J Environ Public Health. 2012;460508.
  • Andreoli V, Sprovieri F. Genetic aspects of susceptibility to mercury toxicity: an overview. Int J Environ Res Public Health. 2017;14(1):93.
  • Hsi HC, Jiang C, Yang TH, et al. The neurological effects of prenatal and postnatal mercury/methylmercury exposure on three-year-old children in Taiwan. Chemosphere. 2014;100:71–76.
  • Rice KM, Walker EM, Wu M, et al. Environmental mercury and its toxic effects. J Prev Med Public Heal. 2014;47:74–83.
  • Houston M. The role of mercury in cardiovascular disease. J Cardiovasc Dis Diagnosis. 2014;2:1–8.
  • Kern JK, Geier DA, Sykes LK, et al. The relationship between mercury and autism: a comprehensive review and discussion. J Trace Elem Med Biol. 2016;37:8–24.
  • Siblerud R, Mutter J, Moore E, et al. Hypothesis and evidence that mercury may be an etiological factor in Alzheimer’s disease. Int J Environ Res Public Health. 2019;16(24):5152.
  • Nabi S. Toxic effects of mercury. Toxic Eff Mercur. 2014: 1–268. doi:https://doi.org/10.1007/978-81-322-1922-4.
  • Yu L, Yan X. Flow injection on-line sorption preconcentration coupled with cold vapor atomic fluorescence spectrometry and on-line oxidative elution for the determination of trace mercury in water samples. At Spectrosc. 2004;25:145.
  • Kopysc E, Pyrzynska K, Garbos S, et al. Determination of mercury by cold-vapor atomic absorption spectrometry with preconcentration on a gold-trap. Anal Sci. 2000;16(12):1309.
  • Selid PD, Xu H, Collins EM, et al. Sensing mercury for biomedical and environmental monitoring. Sensors. 2009;9:5446–5459.
  • Saha K, Agasti SS, Kim C, et al. Gold nanoparticles in chemical and biological sensing. Chem Rev. 2012;112:2739–2779.
  • Chemnasiri W, Hernandez FE. Gold nanorod-based mercury sensor using functionalized glass substrates. Sens Actuators B Chem. 2012;173:322–328.
  • Darbha GK, Ray A, Ray PC. Gold nanoparticle-based miniaturized detection of mercury in soil, water. ACS Nano. 2007;1:208–214.
  • Li D, Wieckowska A, Willner I. Optical analysis of Hg2+ ions by oligonucleotide-gold- nanoparticle hybrids and DNA-based machines. Angew Chem – Int Ed. 2008;47:3927–3393.
  • Sharma AK, Jha R, Gupta BD. Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. Sens J IEEE. 2007;7:1118–1129.
  • Rithesh Raj D, Prasanth S, Vineeshkumar TV, et al. Ammonia sensing properties of tapered plastic optical fiber coated with silver nanoparticles/PVP/PVA hybrid. Opt Commun. 2015;340:86–92.
  • Tagad CK, Dugasani SR, Aiyer R, et al. Green synthesis of silver nanoparticles and their application for the development of optical fiber based hydrogen peroxide sensor. Sens Actuators B Chem. 2013;183:144–149.
  • Renganathan B, Sastikumar D, Gobi G, et al. Gas sensing properties of a clad modified fiber optic sensor with Ce, Li and Al doped nanocrystalline zinc oxides. Sens Actuators B Chem. 2011;156:263–270.
  • O’Meara JM, Börjesson J, Chettle DR, et al. Optimization of an in vivo X-ray fluorescence mercury measurement system. Nucl Instrum Meth Phys Res B Beam Interact Mater At. 2004;213:560–563.
  • Borjesson J, Barregard L, Sallsten G, et al. In vivo XRF analysis of mercury: the relation between concentrations in the kidney and the urine. Phys Med Biol. 1995;40:413–426.
  • Grinyer J, Popovic M, Chettle DR. Detection of mercury in the kidney via source-excited X-ray fluorescence. X-ray Spectrom. 2007;36:99–103.
  • Hofmann M, Fischer G, Weigel R, et al. Microwave-based noninvasive concentration measurements for biomedical applications. IEEE Trans Microw Theory Techn. 2013;61(5):2195–2204.
  • Ansari MAH, Jha AK, Akhtar MJ. Design and application of the CSRR-based planar sensor for noninvasive measurement of complex permittivity. IEEE Sens J. 2015;15(12):7181–7189.
  • Albishi A, Ramahi O. Detection of surface and subsurface cracks in metallic and non-metallic materials using a complementary split-ring resonator. Sensors. 2014;14(10):19354–19370.
  • Ali A, El Badawe M, Ramahi OM. Microwave imaging of subsurface flaws in coated metallic structures using complementary splitring resonators. IEEE Sens J. 2016;16(18):6890–6898.
  • Govind G, Tiwari NK, Agrawal KK, et al. Microwave subsurface imaging of composite structures using complementary split ring resonators. IEEE Sens J. 2018;18(18):7442–7449.
  • Govind G, Akhtar MJ. Microwave subsurface imaging of dielectric structures using fractal geometries of complementary split ring resonators. Int J RF Microw Computer -Aided Eng. 2019;29(3):e21638.
  • Chen T, Li S, Sun H. Metamaterials application in sensing. Sensors. 2012;12(3):2742–2765.
  • Yang JJ, Huang M, Tang H, et al. Metamaterial sensors. Int J Antennas Propag. 2013;2013:16.
  • Shi P, Gao R, Liu S, et al. Topology optimization-based design of metamaterial-inspired sensor with improved sensitivity. Sensors Actuators A Phys. 2017. doi:https://doi.org/10.1016/j.sna.2017.10.050.
  • Wongkasem N, Ruiz M. Multi-negative index band metamaterial-inspired microfluidic sensors. PIER C. 2019;94:29–44.
  • Ruiz M, Wongkasem N. Development of X-Band metamaterial-inspired sensors for dielectric constant detection. IEEE AP-S Conference; July 2019; Atlanta, Georgia, USA.
  • Su L, Mata-Contreras J, Velez P, et al. A review of sensing strategies for microwave sensors based on metamaterial-inspired resonator: dielectric characterization, displacement, and angular velocity measurements for health diagnosis, telecommunication, and space applications. Intl J Antennas Propag. 2017;5619728:1–13.
  • Long J, Wang B. A Metamaterial-inspired sensor for combined inductive-capacitive. Appl Phys Lett. 2015;106:074104.
  • Salim A, Lim S. Review of recent metamaterials microfluidic sensors. Sensor. 2018;18:232.
  • Weina L, Haoran S, Xu L. A microwave method for dielectric characterization measurement of small liquids using a metamaterial-based sensor. Sensor. 2018;18:1438.
  • Bakir M. Electromagnetic-based microfluidic sensor applications. J Electrochem Soc. 2017;164:B488–B494.
  • Saghati AP, Batra JS, Kameoka J, et al. A metamaterial-inspired wideband microwave interferometry sensor for dielectric spectroscopy of liquid chemicals. IEEE Trans Microw Theory Tech. 2017;65:2558–2570.
  • Awang RA, Tovar-Lopez FJ, Baum T, et al. Meta-atom microfluidic sensor for measurement of dielectric properties of liquids. J Appl Phys. 2017;121(9):094506.
  • Bakır M, Karaaslan M, Unal E, et al. Microfluidic and fuel adulteration sensing by using chiral metamaterial sensor. J Electrochem Soc. 2018;165:11.
  • Shih K, Pitchappa P, Manjappa M, et al. Microfluidic metamaterial sensor: selective trapping and remote sensing of microparticles. J Appl Phys. 2017;121:023102.
  • Afapour ZOV, Ajati YAH, Ajati MOH. Graphene-based mid-infrared biosensor. J Opt Soc Am B. 2017;34:2586–2592.
  • Geng Z, Zhang X, Fan Z, et al. A route to Terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage. Sci Rep. 2017;7:1–11.
  • Sreekanth KV, Alapan Y, ElKabbash M, et al. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat Mater. 2016;15:621–627.
  • Aristov AI, Manousidaki M, Danilov A, et al. 3D Plasmonic crystal metamaterials for ultra-sensitive biosensing. Sci Rep. 2016;6:1–8.
  • Chen M, Fan F, Shen S, et al. Terahertz ultrathin film thickness sensor below λ/90 based on metamaterial. Appl Opt. 2016;55:6471–6474.
  • Sabri YM, Kojima R, Ippolito SJ, et al. QCM based mercury vapor sensor modified with polypyrene supported palladium. Sens Actuators B. 2011;160:616–622.
  • Lee JS, Han MS, Mirkin CA. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew Chem Int Ed 2007;46:4093–4096.
  • Liu CW, Hsieh YT, Huang CC, et al. Detection of mercury(II) based on Hg2+ DNA complexes inducing the aggregation of gold nanoparticles. Chem Commun. 2008;19:2242–2244.
  • Capitan-Vallvey LF, Cano Raya C, Lopez EL, et al. Irreversible optical test strip for mercury determination based on neutral ionophore. Anal Chim Acta. 2004;524:365–372.
  • Zhang XB, Guo CC, Li ZZ, et al. An optical fiber chemical sensor for mercury ions based on a porphyrin dimer. Anal Chem. 2002;74:821–825.
  • Sato RL, Li GG, Shaha S. Antepartum seafood consumption and mercury levels in newborn cord blood. Am J Obstet Gynecol. 2006;194:1683–1688.
  • Valentino L, Torregrossa MV, Saliba LJ. Health effects of mercury ingested through consumption of seafood. Water Sci Technol. 1995;32(9–10):41–47.
  • Plessi M, Bertelli D, Monzani A. Mercury and selenium content in selected seafood. J Food Compos Anal. 2001;14(Issue 5):461–467.
  • Engheta N, Ziolkowski RW. Electromagnetic metamaterials: physics and engineering explorations. New York: Wiley-IEEE Press; 2006.
  • Smith DR, Kroll N. Negative refractive index in left-handed materials. Phys Rev Lett. 2000;85(14):2933–2936.
  • Han B, Li S, Li Z, et al. Asymmetric transmission for dual-circularly and linearly polarized waves based on a chiral metasurface. Opt Express. 2021;29(13):19643–11965.
  • Li ZY, Li SJ, Han BW, et al.  Quad-Band Transmissive Metasurface with Linear to Dual-Circular Polarization Conversion Simultaneously. Adv Theory Simulat. 2021;4(8):2100117.
  • Li SJ, Li YB, Li H, et al. A thin self-feeding Janus metasurface for manipulating incident waves and emitting radiation waves simultaneously. Ann Phys. 2020;532(5).
  • Li SJ, Li YB, Zhang L, et al. Programmable controls to scattering properties of a radiation array. Laser Photon Rev. 2021;15(2):2000449.
  • Kaina N, Lemoult F, Fink M, et al. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature. 2015;525:77–81.
  • Ambati M, Fang N, Sun C, et al. Surface resonant states and superlensing in acoustic metamaterials. Phys Rev B – Condens Matter Mater Phys. 2007;75:1–5.
  • Singhal PK, Garg B, Agrawal NA. High gain rectangular microstrip patch antenna using different C patterns metamaterial design in L-band. Adv Comput Tech Electromagn. 2012: 1–5.
  • Alkurt FO, Altintas O, Atci A, et al. Antenna-based microwave absorber for imaging in the frequencies of 1.8, 2.45, and 5.8 GHz. Opt Eng. 2020;57(11).
  • Dogan E, Unal E, Kapusuz D, et al. Microstrip patch antenna covered with left handed metamaterial. ACES J. 2013;28(10).
  • Zhu H, Yi F, Cubukcu E. Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances. Nat Photonics. 2016;10:709–714.
  • Akgol O, Altintas O, Unal E, et al. Linear to left- and right-hand circular polarization conversion by using a metasurface structure. Int J Microw Wirel Technol. 2018;10:133–138.
  • Altintas O, Unal E, Akgol O, et al. Design of a wide band metasurface as a linear to circular polarization converter. Mod Phys Lett B. 2017;31:1–12.
  • Akgol O, Unal E, Altintas O, et al. Design of metasurface polarization converter from linearly polarized signal to circularly polarized signal. Optik (Stuttg). 2018;161:12–19.
  • Wang R, Li L, Tian H, et al. Full telecomband covered half-wave meta-reflect array for efficient circular polarization conversion. Opt Commun. 2018;427:469–476.
  • Ma HF, Cui TJ. Three-dimensional broadband ground-plane cloak made of metamaterials. Nat Commun. 2010;1:1–6.
  • Alu A, Engheta N. Plasmonic and metamaterial cloaking: physical mechanisms and potentials. J Opt A: Pure Appl Opt. 2008;093002.
  • Chen Z, Guo B, Yang Y, et al. Metamaterials-based enhanced energy harvesting: a review. Phys B Phys Condens Matter. 2014;438:1–8.
  • Muhammad N, Fu T, Liu Q, et al. Plasmonic metasurface absorber based on electro-optic substrate for energy harvesting. Materials (Basel). 2018;11(11):2315. doi:https://doi.org/10.3390/ma11112315.
  • Bağmancı M, Karaaslan M, Altıntaş O, et al. Wideband metamaterial absorber based on CRRs with lumped elements for microwave energy harvesting. J Microw Power Electromagn Energy. 2017: 7823.
  • Karaaslan M, Bağmancı M, Ünal E, et al. Broad band metamaterial absorber based on wheel resonators with lumped elements for microwave energy harvesting. Opt Quantum Electron. 2018: 1–18. doi:https://doi.org/10.1007/s11082-018-1484-2.
  • Alibakhshi-Kenari M, Virdee BS, Ali A, et al. Miniaturised planar-patch antenna based on metamaterial L-shaped unit-cells for broadband portable microwave devices and multiband wireless communication systems. IET Microw Antennas Propag. 2018;12(7):1080–1086.
  • Alibakhshi-Kenari M, Virdee BS, Ali A, et al. Extended aperture miniature antenna based on CRLH metamaterials for wireless communication systems operating over UHF to C-band. Radio Sci. 2018;53(2):154–165.
  • Alibakhshi-Kenari M, Naser-Moghadasi M, Sadeghzadeh RA, et al. Periodic array of complementary artificial magnetic conductor metamaterials-based multiband antennas for broadband wireless transceivers. IET Microw Antennas Propag. 2016;10(15):1682–1691.
  • Alibakhshi-Kenari M, Naser-Moghadasi M, Sadeghzadeh RA. Bandwidth and radiation specifications enhancement of monopole antennas loaded with split ring resonators. IET Microw Antennas Propag. 2015;9(14):1487–1496.
  • Alibakhshi-Kenari M, Naser-Moghadasi M, Sadeghzadeh RA. Composite right–left-handed-based antenna with wide applications in very-high frequency–ultra-high frequency bands for radio transceivers. IET Microw Antennas Propag. 2015;9(15):1713–1726.
  • Pendry JB, Holden AJ, Stewart WJ, et al. Extremely Low frequency plasmons in metallic mesostructures. Phys Rev Lett. 1996;76:4773.
  • Smith DR, Padilla WJ, Vier DC, et al. A composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett. 2000;84:4184–4187.
  • Su L, Naqui J, Mata-Contreras J, et al. Splitter/combiner microstrip sections loaded with pairs of complementary split ring resonators (CSRRs): modeling and optimization for differential sensing applications. IEEE Trans Microw Theory Techn. Dec. 2016;64(12):4362–4370.
  • Katsarakis N, Koschny T, Kafesaki M, et al. Electric coupling to the magnetic resonance of split ring resonators. Appl Phys Lett. 2004;84(15):2943–2945.
  • Durán-Sindreu M, Naqui J, Paredes F, et al. Electrically small resonators for planar metamaterial, microwave circuit and antenna design: a comparative analysis. Appl Sci. 2012;2(2):375–395. doi:https://doi.org/10.3390/app2020375.
  • Baena JD, Bonache J, Martín F, et al. Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Trans Microw Theory Tech. 2005;53(4 II):1451–1460. doi:https://doi.org/10.1109/TMTT.2005.845211.
  • Marques R, Martín F, Sorolla M. Metamaterials with negative parameters: theory, design and microwave applications. Hoboken (NJ): John Wiley & Sons, Inc; 2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.