322
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Broadband water-based metamaterial absorber for millimeter-wave, high-power applications

ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 557-567 | Received 30 Jun 2021, Accepted 29 Aug 2021, Published online: 07 Sep 2021

References

  • Costa F, Monorchio A, Manara G, et al. Theory, design and perspectives of electromagnetic wave absorbers. IEEE Electromagn Compat Mag. 2016;5(2):66–74.
  • Salisbury WW. Absorbent body for electronmagnetic waves. U S Patent. 1952;2599944A.
  • Munk B A. Frequency selective surfaces – theory and design. New York: Wiley; 2000.
  • Kim J -B, Byun J -H. Salisbury screen absorbers of dielectric lossy sheets of carbon nanocomposite laminates. IEEE Trans Electromagn Compat. 2012;54(1):37–42.
  • Knott E, Langseth K. Performance degradation of Jaumann absorbers due to curvature. IEEE Trans Antennas Propag. 1980;28(1):137–139.
  • Knott EF, Lunden CD. The two-sheet capacitive Jaumann absorber. IEEE Trans Antennas Propag. 1995;43(11):1339–1343.
  • Munk BA, Munk P, Pryor J. On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence. IEEE Trans Antennas Propag. 2007;55(1):186–193.
  • Emerson W. Electromagnetic wave absorbers and anechoic chambers through the years. IEEE Trans Antennas Propag. 1973;21(4):484–490.
  • Landy NL, Sajuyigbe S, Mock JJ, et al. Perfect metamaterial absorber. Phys Rev Lett. 2008;100(20):207402.
  • Baqir MA, Choudhury PK. Design of hyperbolic metamaterial-based absorber comprised of Ti nanospheres. IEEE Photon Tech Lett. 2019;31(10):735–738.
  • Pu M, Hu C, Wang M, et al. Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt Express. 2011;19(18):17413–17420.
  • Baqir MA, Choudhury PK. Hyperbolic metamaterial-based UV absorber. IEEE Photo Tech Lett. 2017;29(18):1548–1551.
  • Ruan J, Ji S, Tao Z, et al. Ultra-wideband metamaterial absorber doped GaAs in the infrared region. J Electromagnet Wave Appl. 2021;35(8):1088–1098.
  • Pourmand M, Choudhury PK, Mohammed MA. Porous gold nanolayer coated halide metal perovskite-based broadband metamaterial absorber in the visible and near-IR regime. IEEE Access. 2021;9:8912–8919.
  • Liu S, Chen H, Cui T. A broadband terahertz absorber using multi-layer stacked bars. Appl Phys Lett. 2015;106(15):151601.
  • Xiong H, Hong J-S, Luo C-M, et al. An ultrathin and broadband metamaterial absorber using multi-layer structures. J Appl Phys. 2013;114(6):064109.
  • Bilal RMH, Baqir MA, Choudhury PK, et al. Wideband microwave absorber comprising metallic split-ring resonators surrounded with E-shaped fractal metamaterial. IEEE Access. 2021;9:5670–5677.
  • Bian X, Pan P, Tang Y, et al. Demonstration of a pulsed G-band 50-W traveling wave tube. IEEE Electron Device Lett. 2021;42(2):248–251.
  • Pan S, Du CH, Bian HQ, et al. Terahertz broadband whispering-gallery mode gyrotron backward-wave oscillator. IEEE Trans Electron Devices. 2019;66(5):2389–2395.
  • Joye CD, Cook AM, Calame JP, et al. Demonstration of a high power, wideband 220-GHz traveling wave amplifier fabricated by UV-LIGA. IEEE Trans Electron Devices. 2014;61(6):1672–1678.
  • Moitra P, Slovick BA, Yu ZG, et al. Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector. Appl Phys Lett. 2014;104(17):171102.
  • Holloway CL, Kuester EF, Baker-Jarvis J, et al. A double negative (DNG) composite medium composed of magneto dielectric spherical particles embedded in a matric. IEEE Trans Antennas Propag. 2003;51(10):2596–2603.
  • Jahani S, Jacob Z. All-dielectric metamaterials. Nat Nanotechnol. 2016;11(1):23–36.
  • Liu X, Fan K, Shadrivov IV, et al. Experimental realization of a terahertz all-dielectric metasurface absorber. Opt Express. 2017;5(1):191–201.
  • Andryieuski A, Kuznetsova SM, Zhukovsky SV, et al. Water: promising opportunities for tunable all-dielectric electromagnetic metamaterials. Sci Rep. 2015;5:13535.
  • Yoo YJ, Ju S, Park SY, et al. Metamaterial absorber for electromagnetic waves in periodic water droplets. Sci Rep. 2015;5:14018.
  • Zhang H, Ling F, Wang H, et al. A water hybrid grapheme metamaterial absorber with broadband absorption. Opt Commun. 2020;463:125394.
  • Sreekanth KV, Mahalakshmi PM, Han S, et al. Brewster mode-enhanced sensing with hyperbolic metamaterial. Adv Opt Mater. 2019;7(21):1900680.
  • Shen Z, Huang X, Yang H, et al. An ultra-wideband, polarization insensitive, and wide incident angle absorber based on an irregular metamaterial structure with layers of water. J Appl Phys. 2018;123(22):225106.
  • Zhang X, Zhang D, Fu Y, et al. 3-D printed swastika-shaped ultrabroadband water-based microwave absorber. IEEE Antennas Wireless Propag. Lett. 2020;19(5):821–825.
  • Ren J, Yin JY. Cylindrical-water-resonator-based ultrabroadband microwave absorber. Opt Mater Express. 2018;8(8):2060–2071.
  • Huang X, Yang H, Shen Z, et al. Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime. J Phys D. 2017;50(38):385304.
  • Xiong H, Yang F. Ultra-broadband and tunable saline water-based absorber in microwave regime. Opt Express. 2020;28(4):5306–5316.
  • Gogoi DJ, Bhattachayya NS. Metasurface absorber based on water meta “molecule” for X-band microwave absorption. J Appl Phys. 2018;124(7):075106.
  • Odit M, Kapitanova P, Andryieuski A, et al. Experimental demonstration of water based tunable metasurface. Appl Phys Lett. 2016;109(1):011901.
  • Xie J, Quader S, Xiao F, et al. Truly all-dielectric ultrabroadband metamaterial absorber: water-based and ground-free. IEEE Antennas Wireless Propag. Lett. 2019;18(3):536–540.
  • Xie J, Zhu W, Rukhlenko ID, et al. Water metamaterial for ultra-broadband and wide-angle absorption. Opt Express. 2018;26(4):5052–5059.
  • Ellison W J. Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0-25 THz and the temperature range 0-100°C. J Phys Chem Ref Data. 2007;36(1):1–18.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.