161
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bandpass Crank–Nicolson form with approximation and absorption for nonreciprocal ferrite material

, , &
Pages 706-721 | Received 01 Aug 2021, Accepted 12 Sep 2021, Published online: 23 Sep 2021

References

  • Aydin Çivi Ö, Hizal A. Effects of anisotropy of ferrite coating on the radiation characteristics of a cylindrical conductor excited by elementary sources. J Electromagnet Wave. 1998;12(3):287–307.
  • Aissa Fekhar YH, Salah-Belkhodja F, Vincent D, et al. Microwave non-reciprocal coplanar directional coupler based on ferrite materials. J Electromagnet Wave. 2020;34(5):623–633.
  • Losada V, Boix RR, Medina F. Resonant modes of stacked circular microstrip patches in multilayered substrates containing anisotropic and chiral materials. J Electromagnet Wave. 2003;17(4):619–640.
  • Sihvola AH, Pekonen OPM. Dielectric mixtures with arbitrarily anisotropic components: focus on special gyrotropic effects. J Electromagnet Wave Appl. 1994;8(12):1605–1624.
  • Yee K. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans Antenna Propag. 1966;14(3):302–307.
  • Pursel JD, Goggans PM. A finite-difference time-domain method for solving electromagnetic problems with bandpass-limited sources. IEEE Trans Antenna Propag. 1999;47(1):9–15.
  • Jung K, Teixeira FL, Lee R. Complex envelope PML-ADI-FDTD method for lossy anisotropic dielectrics. IEEE Antenna Wire Propag. Lett. 2007;6:643–646.
  • Taflove A, Hagness SC. Computational electrodynamics: the finite-difference time domain method. 3rd ed. Norwood, MA: Artech House; 2005.
  • Namiki T. 3-D ADI-FDTD method unconditionally stable time- domain algorithm for solving full vector Maxwell’s equations. IEEE Trans Microw Theory Tech. 2000;48(10):1743–1748.
  • Shibayama J, Muraki M, Yamauchi J, et al. Efficient implicit FDTD algorithm based on locally one-dimensional scheme. Electron Lett. 2005;41(19):1046–1047.
  • Kong YD, Chu QX. High-order split-step unconditionally-stable FDTD methods and numerical analysis. IEEE Trans Antenna Propag. 2011;59(9):3280–3289.
  • Kusaf M, Oztoprak AY. An unconditionally stable split-step FDTD method for low anisotropy. IEEE Micro Wire Compos Lett. 2008;18(4):224–226.
  • Ju S, Jung K-Y, Kim H. Investigation on the characteristics of the envelope FDTD based on the alternating direction implicit scheme. IEEE Micro Wire Compo Lett. 2003;13(9):414–416.
  • Sun G, Trueman CW. Approximate Crank–Nicolson scheme for the 2-D finite-difference time-domain method for TEz waves. IEEE Trans Antenna Propag. 2004;52(11):2963–2972.
  • Sun G, Trueman CW. Unconditionally stable Crank–Nicolson scheme for solving two-dimensional Maxwell’s equations. Electron Lett. 2003;39(7):595–597.
  • Shi XY, Jiang XY. Implementation of the Crank–Nicolson Douglas–Gunn finite difference time domain with complex frequency-shifted perfectly matched layer for modeling unbounded isotropic dispersive media in two dimensions. Microw Opt Technol Lett. 2020;62(3):1103–1111.
  • Sun G, Trueman CW. Efficient implementations of the Crank–Nicolson scheme for the finite-difference time-domain method. IEEE Trans Microw Theory Tech. 2006;54(5):2275–2284.
  • Jiang HL, Wu LT, Zhang XG, et al. Computationally efficient CN-PML for EM simulations. IEEE Trans Microw Theory Tech. 2019;67(12):4646–4655.
  • Wu P, Xie Y, Jiang H, et al. Performance enhanced Crank–Nicolson boundary conditions for EM problems. IEEE Trans Antenna Propag. 2021;69(3):1513–1527.
  • Berenger JP. A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys. 1994;114(2):185–200.
  • Chew WC, Weedon WH. A 3D perfectly matched medium from modified Maxwells equations with stretched coordinates. Microw Opt Technol Lett. 1994;7(13):599–604.
  • Kuzuoglu M, Mittra R. Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers. IEEE Microw Guided Wave Lett. 1996;6:447–449.
  • Berenger JP. Perfectly matched layer (PML) for computational electromagnetics. Williston, ND: Morgan & Claypool; 2007.
  • Berenger JP. Evanescent waves in PML’s: origin of the numerical reflection in wave-structure interaction problems. IEEE Trans Antenna Propag. 1999;47(10):1497–1503.
  • Correia D, Jin JM. On the development of a higher-order PML. IEEE Trans Antenna Propag. 2005;53(12):4157–4163.
  • Correia D, Jin JM. On the development of a higher-order PML. IEEE Trans Antenna Propag. 2005;53(12):4157–4163.
  • Xu Z, Ma X, Liu Q, et al. Bilinear transform implementation of the higher-order PML. 2012 Sixth International Conference on Electromagnetic Field Problems and Applications, 2012, pp. 1–4.
  • Wei X, Shao W, Shi S, et al. An optimized higher order PML in domain decomposition WLP-FDTD method for time reversal analysis. IEEE Trans Antenna Propag. 2016;64(10):4374–4383.
  • Feng NX, Yue YQ, Zhu CH, et al. Second-order PML: optimal choice of nth-order PML for truncating FDTD domains. J Computat Phys. 2015;285:71–83.
  • Wu PY, Jiang HL, Xie YJ, et al. Three-dimensional higher order PML based on alternating direction implicit algorithm. IEEE Antenna Wirel Propag Lett. 2019;18(12):2952–2956.
  • Hunsberger F, Luebbers R, Kunz K. Finite-difference time-domain analysis of gyrotropic media. I. Magnetized plasma. IEEE Trans Antenna Propag. 1992;40(12):1489–1495.
  • Nishioka Y, Maeshima O, Uno T, et al. FDTD analysis of resistor-loaded bow-tie antennas covered with ferrite-coated conducting cavity for subsurface radar. IEEE Trans Antenna Propag. 1999;47(6):970–977.
  • Pereda JA, Grande A, Gonzalez O, et al. Some numerical aspects of an extension of the FDTD method to incorporate magnetized ferrites. 2007 Workshop on Computational Electromagnetics in Time-Domain, 2007, pp. 1–4.
  • Okoniewska E, Cyca D, Okoniewski M. Late time stability and accuracy of ferrite FDTD algorithms. 2007 Workshop on Computational Electromagnetics in Time-Domain, 2007, pp. 1–4.
  • Wu PY, Xie YJ, Jiang HL, et al. Higher-order approximate CN-PML theory for magnetized ferrite simulations. Adv Theo Simul. 2020;3(4):1900221.
  • Wu PY, Xie YJ, Jiang HL, et al. Bilinear Z-transform perfectly matched layer for rotational symmetric microwave structures with magnetised ferrite. IET Micro Antenna Propag. 2019;14(4):247–252.
  • Yao Z, Wang YE. 3D unconditionally stable FDTD modeling of micromagnetics and electrodynamics. 2017 IEEE MTT-S International Microwave Symposium (IMS). 2017: 12–15.
  • Wu P, Xie Y, Jiang H, et al. Complex envelope hybrid implicit–explicit procedure with enhanced absorption for bandpass nonreciprocal application. IEEE Micro Wire Components Lett. 2021;31(6):533–536.
  • Chen J, Wang J. Three-dimensional dispersive hybrid implicit-explicit finite-difference time-domain method for simulations of graphene. Comput Phys Comm. 2016;207:211–216.
  • Chen J, Wang J. Numerical simulation using HIE-FDTD method to estimate various antennas with fine scale structures. IEEE Trans Antenna Ppropag. 2007;55(12):3603–3612.
  • Chen J, Wang J. A Three-dimensional semi-implicit FDTD scheme for calculation of shielding effectiveness of enclosure with thin slots. IEEE Trans Electro Compat. 2007;49(2):354–360.
  • Gautschi W. Numerical analysis: An introduction. Boston (MA): Birkhaüser; 1997.
  • Correia D, Jin JM. Performance of regular PML, CFS-PML, and second-order PML for waveguide problems. Microw Opt Technol Lett. 2006;48:2121–2126.
  • Wu P, Xie Y, Jiang H, et al. Performance-enhanced complex envelope ADI-PML for bandpass EM simulation. IEEE Micro Wire Compon Lett. 2020;30(8):729–732.
  • Li JX, Wu PY, Jiang HL. Implementation of higher order CNAD CFSPML for truncating unmagnetised plasma. IET Microw Antenna Propag. 2019;13(6):756–760.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.