171
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Complementary split-ring resonator and strip-gap based metamaterial fractal antenna with miniature size and enhanced bandwidth for 5G applications

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 787-803 | Received 06 Jun 2021, Accepted 17 Sep 2021, Published online: 26 Sep 2021

References

  • Shafique K, Khawaja BA, Sabir F, et al. Internet of things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT scenarios. IEEE Access. 2020 Jan 28;8:23022–23040.
  • Rappaport TS, Xing Y, Kanhere O, et al. Wireless communications and applications above 100 GHz: opportunities and challenges for 6G and beyond. IEEE Access. 2019 Jun 6;7:78729–78757.
  • Vallappil AK, Rahim MK, Khawaja BA, et al. Compact metamaterial based 4×4 butler matrix with improved bandwidth for 5G applications. IEEE Access. 2020 Jan 13;8:13573–13583.
  • Razzaqi AA, Khawaja BA, Ramzan M, et al. A triple-band antenna array for next-generation wireless and satellite-based applications. Int J Microwave Wirel Technol. 2016 Feb;8(1):71–80.
  • Wang Z, Dong Y, Itoh T. Transmission line metamaterial-inspired circularly polarized RFID antenna. IEEE Antennas Wirel Propag Lett. 2020 Apr 3;19(6):964–968.
  • Singh AK, Abegaonkar MP, Koul SK. High-gain and high-aperture-efficiency cavity resonator antenna using metamaterial superstrate. IEEE Antennas Wirel Propag Lett. 2017 Jun 26;16:2388–2391.
  • Cao W, Ma W, Peng W, et al. Bandwidth-enhanced electrically large microstrip antenna loaded with SRR structures. IEEE Antennas Wirel Propag Lett. 2019 Jan 30;18(4):576–580.
  • Xu HX, Wang GM, Liang JG, et al. Compact circularly polarized antennas combining meta-surfaces and strong space-filling meta-resonators. IEEE Trans Antennas Propag. 2013 Apr 1;61(7):3442–3450.
  • Chang K, Jiang T, Ran L, et al. Investigation of microwave negative refractive index (NRI) transmission lines incorporating tunnel diodes. IEEE Antennas Wirel Propag Lett. 2012 Jun 6;11:671–674.
  • Jin C, Alphones A, Tsutsumi M. Double periodic composite right/left handed transmission line and its applications to compact leaky-wave antennas. IEEE Trans Antennas Propag. 2011 Aug 4;59(10):3679–3686.
  • Xu HX, Wang GM, Qi MQ. A miniaturized triple-band metamaterial antenna with radiation pattern selectivity and polarization diversity. Prog Electromagnet Res. 2013;137:275–292.
  • Zhu JX, Bai P, Wang JF. Ultrasmall dual-band metamaterial antennas based on asymmetrical hybrid resonators. Int J Antennas Propag. 2016 Nov 20;2016:1–10. Article ID 7019268. https://doi.org/https://doi.org/10.1155/2016/7019268.
  • Abdalla MA, Hu Z, Muvianto C. Analysis and design of a triple band metamaterial simplified CRLH cells loaded monopole antenna. Int J Microwave Wirel Technol. 2017 May;9(4):903–913.
  • Hasan M, Rahman M, Faruque MR, et al. Electrically compact SRR-loaded metamaterial inspired quad band antenna for bluetooth/WiFi/WLAN/WiMAX system. Electronics (Basel). 2019 Jul;8(7):790.
  • Shehata G, Mohanna M, Rabeh ML. Tri-band small monopole antenna based on SRR units. NRIAG J Astron Geophys. 2015 Dec 1;4(2):185–191.
  • Geetharamani G, Aathmanesan T. A metamaterial inspired tapered patch antenna for WLAN/WiMAX applications. Wirel Pers Commun. 2020 Jul;113(2):1331–1343.
  • Li D, Szabó Z, Qing X, et al. A high gain antenna with an optimized metamaterial inspired superstrate. IEEE Trans Antennas Propag. 2012 Aug 14;60(12):6018–6023.
  • Al-Bawri SS, Hwang Goh H, Islam MS, et al. Compact ultra-wideband monopole antenna loaded with metamaterial. Sensors. 2020 Jan;20(3):796.
  • Liu T, Cao XY, Gao J, et al. Design of miniaturized broadband and high gain metamaterial patch antenna. Microw Opt Technol Lett. 2011 Dec;53(12):2858–2861.
  • Kaur P, Aggarwal SK, De A. Performance enhancement of rectangular microstrip patch antenna using double H shaped metamaterial. Radioelectronics Commun Syst. 2016 Nov;59(11):496–501.
  • Kumar P, Ali T, Pai MM. Electromagnetic metamaterials: A New paradigm of antenna design. IEEE Access. 2021 Jan 22;9:18722–18751.
  • Wang Z, Dong Y, Itoh T. Miniaturized wideband CP antenna based on metaresonator and CRLH-TLs for 5G new radio applications. IEEE Trans Antennas Propag. 2020 Jul 20;69(1):74–83.
  • Nuthakki VR, Dhamodharan S. Via-less CRLH-TL unit cells loaded compact and bandwidth-enhanced metamaterial based antennas. AEU-Int J Electron Commun. 2017 Oct 1;80:48–58.
  • Kumar S, Kumari R. Composite right/left-handed ultra-wideband metamaterial antenna with improved gain. Microw Opt Technol Lett. 2021 Jan;63(1):188–195.
  • Karimbu Vallappil A, Khawaja BA, Khan I, et al. Dual-band minkowski–Sierpinski fractal antenna for next generation satellite communications and wireless body area networks. Microw Opt Technol Lett. 2018 Jan;60(1):171–178.
  • Balanis CA. Antenna theory, analysis and design. 3rd Edition John Wiley & Sons, Inc.; 2005.
  • Ali JK. A new reduced size multiband patch antenna structure based on minkowski pre-fractal geometry. J Eng Appl Sci. 2007 Jun;2(7):1120–1124.
  • Dhar S, Patra K, Ghatak R, et al. A dielectric resonator-loaded minkowski fractal-shaped slot loop heptaband antenna. IEEE Trans Antennas Propag. 2015 Jan 19;63(4):1521–1529.
  • Lee EC, Soh PJ, Hashim NB, et al. Design and fabrication of a flexible Minkowski fractal antenna for VHF applications). Inproceedings of the 5th european conference on Antennas and Propagation (EUCAP); 2011 Apr 11 (pp. 521-524). IEEE.
  • Soliman AM, Elsheakh DM, Abdallah EA, et al. Inspired metamaterial quad-band printed inverted-F (IFA) antenna for USB applications. Appl Comput Electromagn Soc J. 2015 May 1;30(5):564–570.
  • Wang C, Yang XS, Wang BZ. A metamaterial-based compact broadband planar monopole MIMO antenna with high isolation. Microw Opt Technol Lett. 2020 Sep;62(9):2965–2970.
  • “Press Release: Final Report on Allocation of Spectrum Bands for Mobile Broadband Service in Malaysia.”. [Online]. Available: https://www.mcmc.gov.my/en/media/press-releases/final-report-on-allocation-of-spectrum-bands-for-m.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.