129
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Analysis of waveguide polarizers using equivalent network and finite elements methods

, &
Pages 1633-1655 | Received 29 Aug 2021, Accepted 30 Jan 2022, Published online: 10 Feb 2022

References

  • Gao S, Luo Q, Zhu F. Circularly polarized antennas. Chichester: John Wiley & Sons; 2014.
  • Piltyay SI. Radiation of the open end of a thin-walled circular waveguide at co- and cross-polarization. Visnyk NTUU KPI Seriia– Radioteknika Radioaparatobuduv. 2009;39:70–76 (in Ukrainian).
  • Naydenko V, Piltyay S. Evolution of radiopulses radiated by Hertz’s dipole in vacuum. 12th international conference on Mathematical Methods in Electromagnetic Theory (MMET); 2008 Jul; Odesa, Ukraine. p. 294–297. doi:https://doi.org/10.1109/MMET.2008.4580972.
  • Pozar DM. Microwave engineering. Hoboken (NJ): John Wiley and Sons; 2012.
  • Kirilenko AA, Kulik DY, Prikolotin SA, et al. Design and optimization of broadband ridged coaxial waveguide polarizers. International Kharkov symposium on physics and engineering of microwaves millimeter and submillimeter waves; 2013; Kharkov. p. 445–447.
  • Polishchuk A, Bulashenko A, Piltyay S, et al. Compact posts-based waveguide polarizer for satellite communications and radar systems. IEEE 3rd Ukraine Conference on Electrical and Computer Engineering (UKRCON); 2021 Aug; Lviv, Ukraine. p. 78–83. doi:https://doi.org/10.1109/UKRCON53503.2021.9575462
  • Pollak AW, Jones ME. A compact quad-ridge orthogonal mode transducer with wide operational bandwidth. IEEE Antennas Wirel Propag Lett. 2018;17(3):422–425.
  • Bykovskyi O, Piltyay S, Bulashenko A, et al. Microwave square waveguide polarization converter with diagonal corner diaphragms. IEEE 5th international conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo); 2021 Nov; Kyiv, Ukraine. p. 220–225.
  • Rud LA, Shpachenko KS. Polarizers on a segment of square waveguide with diagonally ridges and adjustment iris. Radioelectron Commun Syst. 2012;55(10):458–463.
  • Rud LA, Shpachenko KS. Polarizers on the basis of sections of a square waveguide with diagonally arranged square ridges: an electrodynamics model and characteristic. Telecommun Radio Eng. 2012;75(1):1–9.
  • Ruiz-Cruz JA, Montejo-Garai JR, Leal-Sevillano CA, et al. Orthomode transducers with folded double-symmetry junctions for broadband and compact antenna feeds. IEEE Trans Antennas Propag. 2018;66(3):1160–1168.
  • Bulashenko A, Piltyay S, Kalinichenko Y, et al. Mathematical modeling of iris-post sections for waveguide filters, phase shifters and polarizers. IEEE 2nd international conference on advanced trends in information theory; 2020 Nov; Kyiv, Ukraine. p. 330–336. doi:https://doi.org/10.1109/ATIT50783.2020.9349321
  • Virone G, Tascone R, Peverini OA, et al. Combined-phase-shift waveguide polarizer. IEEE Microw Wirel Comp Lett. 2008;18(8):509–511. doi:https://doi.org/10.1109/LMWC.2008.2001005
  • Piltyay S, Bulashenko A, Kushnir H, et al. New tunable iris-post square waveguide polarizers for satellite information systems. IEEE 2nd international conference on Advanced Trends in Information Theory (IEEE ATIT); 2020 Nov; Kyiv, Ukraine. p. 342–348. doi:https://doi.org/10.1109/ATIT50783.2020.9349357
  • Bulashenko AV, Piltyay SI, Demchenko IV. Wave matrix technique for waveguide iris polarizers simulation. Numerical results. J Nano- Electron Phys. 2021;13(5):05023-1–05023-6. doi:https://doi.org/10.21272/jnep.13(5).05023
  • Piltyay SI. Enhanced C-band coaxial orthomode transducer. Visnyk NTUU KPI Seriia – Radiotekhnika, Radioaparatobuduvannia. 2014;58:27–34. doi:https://doi.org/10.20535/RADAP.2014.58.27-34
  • Piltyay SI. High performance extended C-band 3.4-4.8 GHz dual circular polarization feed system. XI International Conference on Antenna Theory and Techniques (ICATT); 2017 May; Kyiv, Ukraine. p. 284–287. doi:https://doi.org/10.1109/ICATT.2017.7972644
  • Dubrovka FF, Piltyay SI. Novel high performance coherent dual-wideband orthomode transducer for coaxial horn feeds. XI International Conference on Antenna Theory and Techniques (ICATT); 2017 May; Kyiv, Ukraine. p. 277–280. doi:https://doi.org/10.1109/ICATT.2017.7972642
  • Dubrovka FF, Piltyay SI. A high performance ultrawideband orthomode transducer and a dual-polarized quad-ridged horn antenna based on it. Proceedings of VIII International Conference on Antenna Theory and Techniques (ICATT); 2011 Sep; Kyiv, Ukraine. p. 176–178. doi:https://doi.org/10.1109/ICATT.2011.6170737
  • Kirilenko AA, Kulik DY, Prikolotin SA, et al. Stepped approximation technique for designing coaxial waveguide polarizers. Proceedings of the IX International Conference on Antenna Theory and Techniques (ICATT); 2013; Odesa. p. 470–472.
  • Dubrovka FF, Piltyay SI. Prediction of eigenmodes cutoff frequencies of sectoral coaxial ridged waveguides. XI international conference on modern problems of radio engineering, telecommunications and computer science; 2012 Feb; Slavske, Ukraine. p. 191.
  • Dubrovka FF, Piltyay SI. A novel wideband coaxial polarizer. IX international conference on antenna theory and techniques; 2013 Sep; Odesa, Ukraine. p. 473–474. doi:https://doi.org/10.1109/ICATT.2013.6650816
  • Dubrovka FF, Piltyay SI. Electrodynamics boundary problem solution for sectoral coaxial ridged waveguides by integral equation technique. Radioelectron Commun Syst. 2012;55(5):191–203. doi:https://doi.org/10.3103/S0735272712050019
  • Dubrovka FF, Piltyay SI. Eigenmodes of sectoral coaxial ridged waveguides. Radioelectron Commun Syst. 2012;55(6):239–247. doi:https://doi.org/10.3103/S0735272712060015
  • Piltyay SI. Wideband antiphase power combiner/divider. Proceeding of the IX international scientific and technical conference on modern problems of radio engineering and telecommunications; 2009; Sevastopol. p. 220.
  • Dubrovka FF, Piltyay SI. Eigenmodes analysis of sectoral coaxial ridged waveguides by transverse field-matching technique. Part 1. Theory. Visnyk NTUU KPI Seriia – Radiotekhnika, Radioaparatobuduvannia. 2013;54:13–23. doi:https://doi.org/10.20535/RADAP.2013.54.13-23
  • Dubrovka FF, Piltyay SI. Eigenmodes analysis of sectoral coaxial ridged waveguides by transverse field-matching technique. Part 2. Results. Visnyk NTUU KPI Seriia – Radiotekhnika, Radioaparatobuduvannia. 2013;55:13–23. doi:https://doi.org/10.20535/RADAP.2013.55.13-23
  • Dubrovka FF, Piltyay SI. Eigenmodes of coaxial quad-ridged waveguides. Theory. Radioelectron Commun Syst. 2014;57(1):1–30. doi:https://doi.org/10.3103/S0735272714010014
  • Dubrovka FF, Piltyay SI. Eigenmodes of coaxial quad-ridged waveguides. Numerical results. Radioelectron Commun Syst. 2014;57(2):59–69. doi:https://doi.org/10.3103/S0735272714020010
  • Dubrovka FF, Piltyay SI. Boundary problem solution for eigenmodes in coaxial quad-ridged waveguides. Inform Telecommun Sci. 2014;5(1):48–61. doi:https://doi.org/10.20535/2411-2976.12014.48-61
  • Chittora A, Yadav SV. A compact circular waveguide polarizer with higher order mode excitation. Proceedings of the IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT); 2020; Bangalore. p. 1–4.
  • Arnieri E, Greco F, Boccia L, et al. A SIW-based polarization rotator with an application to linear-to-circular dual-band polarizers at K-/Ka-band. IEEE Trans Antennas Propag. 2020;68(5):3730–3738.
  • Haas D, Marek A, Thumm M, et al. Broadband polarizer miter bend for high-power radar applications. German microwave conference; 2020; Cottbus.
  • Sushko O, Piltyay S, Dubrovka F. Symmetrically fed 1–10 GHz log-periodic dipole antenna array feed for reflector antennas. IEEE Ukrainian microwave week; 2020; Kharkiv, Ukraine. p. 222–225. doi:https://doi.org/10.1109/UkrMW49653.2020.9252778
  • Mishra G, Sharma SK, Chieh J-C. A circular polarized feed horn with inbuilt polarizer for offset reflector antenna for W-band CubeSat applications. IEEE Trans Antennas Propag. 2019;67(3):1904–1909.
  • Zheng SY, Chan WS, Man KF. Broadband phase shifter using loaded transmission line. IEEE Microw Wirel Comp Lett. 2010;20(9):498–500.
  • Polo-Lopez L, Masa-Campos JL, Ruiz-Cruz JA. Design of a reconfigurable rectangular waveguide phase shifter with metallic posts. Proceedings of the XII European microwave integrated circuits conference; 2017; Nuremberg. p. 349–352.
  • Eleftheriades GV, Omar AS, Katehi LPB, et al. Some important properties of waveguide junction generalized scattering matrices in the context of the mode matching technique. IEEE Trans Microw Theory Tech. 1994;42(10):1896–1903.
  • Prikolotin SA, Kirilenko AA. Mode matching technique allowance for field singularities as applied to inner problems with arbitrary piecewise-coordinate boundaries: Part 1. Eigenmode spectra of orthogonic waveguides. Telecommun Radio Eng. 2011;70(11):937–958.
  • Steshenko SO, Prikolotin SA, Kirilenko AA, et al. Partial domain technique considering field singularities in the internal problems with arbitrary piecewise-coordinate boundaries: Part 2. Plane-transverse junctions and “in-line objects”. Telecommun Radio Eng. 2014;73(3):187–201.
  • Sun W, Balanis CA. MFIE analysis and design of ridged waveguides. IEEE Trans Microw Theory Tech. 1993;41(11):1965–1971.
  • Piltyay SI. Numerically effective basis functions in integral equation technique for sectoral coaxial ridged waveguides. 14th international conference on Mathematical Methods in Electromagnetic Theory (MMET); 2012 Aug; Kyiv, Ukraine. p. 492–495. doi:https://doi.org/10.1109/MMET.2012.6331195
  • Amari S, Bornemann J, Vahldieck R. Application of a coupled-integral-equations technique to ridged waveguides. IEEE Trans Microw Theory Tech. 1996;44(12):2256–2264.
  • Kirilenko AA, Senkevich SL, Steshenko SO. Application of the generalized scattering matrix technique for the dispersion analysis of 3D slow-wave structures. Telecommun Radio Eng. 2015;74(17):1497–1511.
  • Omelianenko MY, Romanenko TV. E-plane waveguide bandpass filters with wide stopband. Visnyk NTUU KPI Seriia – Radioteknika Radioaparatobuduvannia. 2020;80:5–13 (in Russian).
  • Amari S. Synthesis of cross-coupled resonator filters using an analytical gradient-based optimization technique. IEEE Trans Microw Theory Tech. 2000;48(9):1559–1564.
  • Kirilenko A, Rud L, Tkachenko V, et al. Evanescent-mode ridged waveguide bandpass filters with improved performance. IEEE Trans Microw Theory Tech. 2002;50(5):1324–1327.
  • Kirilenko A, Mospan L, Tkachenko V. Capacitive iris bandpass filters with spurious harmonic modes suppression. Proceedings of international conference on Mathematical Methods in Electromagnetic Theory (MMET); 2002; Kyiv. p. 284–287.
  • Tascone R, Savi P, Trinchenko D, et al. Scattering matrix approach for the design of microwave filter. IEEE Trans Microw Theory Tech. 2000;48(3):423–430.
  • Sanchez JR, Bachiller C, Julia M, et al. Microwave filter based on substrate integrated waveguide with alternating dielectric line sections. IEEE Microw Wirel Comp Lett. 2018;28(11):990–992.
  • Shuliak V, Piltyay S, Bulashenko A, et al. Modern microwave polarizers and their electromagnetic characteristics. IEEE 3rd Ukraine conference on electrical and computer engineering; 2021 Aug; Lviv, Ukraine. p. 21–26. doi:https://doi.org/10.1109/UKRCON53503.2021.9575879
  • Kirilenko AA, Steshenko SO, Derkach VN, et al. A tunable compact polarizer in a circular waveguide. IEEE Trans Microw Theory Tech. 2019;67(2):592–596.
  • Kolmakova N, Perov A, Derkach V, et al. Polarization plane rotation by arbitrary angle using D4 symmetrical structures. IEEE Trans Microw Theory Tech. 2016;64(2):429–435.
  • Herhil Y, Piltyay S, Bulashenko A, et al. Characteristic impedances of rectangular and circular waveguides for fundamental modes. IEEE 3rd Ukraine Conference on Electrical and Computer Engineering (UKRCON); 2021 Aug; Lviv, Ukraine. p. 46–51. doi:https://doi.org/10.1109/UKRCON53503.2021.9575359
  • Kushnir H, Bulashenko A, Piltyay S, et al. Multiple reflections method for diaphragms polarizers development. IEEE international conference on problems of infocommunications. Science and technology; 2021 Oct; Kharkiv, Ukraine.
  • Bulashenko A, Piltyay S, Polishchuk A, et al. New traffic model of M2M technology in 5G wireless sensor networks. IEEE 2nd international conference on advanced trends in information theory; 2020 Nov; Kyiv, Ukraine. p. 125–131. doi:https://doi.org/10.1109/ATIT50783.2020.9349305
  • Herhil Y, Piltyay S, Bulashenko A, et al. Electromagnetic waves propagation in ferrimagnetic materials and their application for designing of nonreciprocal microwave devices. IEEE 5th international conference on information and telecommunication technologies and radio electronics (UkrMiCo); 2021 Nov; Kyiv, Ukraine. p. 314–319.
  • Bulashenko A, Piltyay S, Demchenko I. Energy efficiency of the D2D direct connection system in 5G networks. IEEE international conference on Problems of Infocommunications. Science and Technology (PIC S&T); 2020 Oct; Kharkiv, Ukraine. p. 537–542. doi:https://doi.org/10.1109/PICST51311.2020.9468035
  • Bulashenko AV. Multibeam arrays based on Rotman lenses. Visnik NTUU KPI Seriia – Radiotekhnika, Radioaparatobuduvannia. 2010;42:178–186 (in Ukrainian).
  • Bulashenko AV, Dubrovka FF. Feeding of antenna arrays based on Rotman lenses (review). Visnyk Sumy State Univ Tech Sci Ser. 2010;3:113–120 (in Ukrainian).
  • Bulashenko AV. Principles of intelligent antenna beam formation. Visnyk Sumy State Univ Tech Sci Ser. 2010;1:111–120 (in Ukrainian).
  • Piltyay S, Bulashenko A, Fesyuk I, et al. Comparative analysis of compact satellite polarizers based on a guide with diaphragms. Adv Electromagn. 2021;10(2):44–55. doi:https://doi.org/10.7716/aem.v10i2.1713
  • Piltyay S. Circular waveguide polarizer for weather radars and satellite information systems. J Microw Optoelectron Electromagn Appl. 2021;20(3):475–489. doi:https://doi.org/10.1590/2179-10742021v20i31183
  • Piltyay S. Square waveguide polarizer with diagonally located irises for Ka-band antenna systems. Adv Electromagn. 2021;10(3):31–38. doi:https://doi.org/10.7716/aem.v10i3.1780
  • Piltyay SI, Bulashenko AV, Demchenko IV. Waveguide iris polarizers for Ku-band satellite antenna feeds. J Nano- Electron Phys. 2020;12(5):05024-1–05024-5. doi:https://doi.org/10.21272/jnep.12(5).05024
  • Fesyuk I, Piltyay S, Bulashenko A, et al. Waveguide polarizer for radar systems of 2 cm wavelength range. IEEE 3rd Ukraine Conference on Electrical and Computer Engineering (UKRCON); 2021 Aug; Lviv, Ukraine. p. 15–20. doi:https://doi.org/10.1109/UKRCON53503.2021.9575278
  • Addamo G, Peverini OA, Manfredi D, et al. Additive manufacturing of Ka-band dual-polarization waveguide components. IEEE Trans Microw Theory Tech. 2018;66(8):3589–3596.
  • Agnihotri I, Sharma SK. Design of a compact 3D metal printed Ka-band waveguide polarizer. IEEE Antennas Wirel Propag Lett. 2019;18(12):2726–2730.
  • Deutschmann B, Jacob AF. Broadband septum polarizer with triangular common port. IEEE Trans Microw Theory Tech. 2020;68(2):693–700.
  • Dubrovka F, Martunyuk S, Dubrovka R, et al. Circularly polarised X-band H11- and H21-modes antenna feed for monopulse autotracking ground station. IEEE Ukrainian microwave week; 2020 Sep; Kharkiv, Ukraine. p. 196–202. doi:https://doi.org/10.1109/UkrMW49653.2020.9252600
  • Dubrovka FF, Piltyay SI, Dubrovka RR, et al. Optimum septum polarizer design for various fractional bandwidths. Radioelectron Commun Syst. 2020;63(1):15–23. doi:https://doi.org/10.3103/S0735272720010021
  • Dubrovka F, Piltyay S, Sushko O, et al. Compact X-band stepped-thickness septum polarizer. IEEE Ukrainian microwave week; 2020 Sep; Kharkiv, Ukraine. p. 135–138. doi:https://doi.org/10.1109/UkrMW49653.2020.9252583
  • Piltyay S, Bulashenko A, Demchenko I. Wireless sensor network connectivity in heterogeneous 5G mobile systems. IEEE international conference on Problems of Infocommunications. Science and Technology (PIC S&T); 2020 Oct; Kharkiv, Ukraine. p. 625–630. doi:https://doi.org/10.1109/PICST51311.2020.9468073
  • Piltyay SI, Sushko OY, Bulashenko AV, et al. Compact Ku-band iris polarizers for satellite telecommunication systems. Telecommun Radio Eng. 2020;79(19):1673–1690. doi:https://doi.org/10.1615/TelecomRadEng.v79.i19.10
  • Kalinichenko Y, Bulashenko A, Bulashenko O, et al. Adjustable iris-post waveguide polarizer for Ku-band satellite uplink systems. IEEE 3rd Ukraine conference on electrical and computer engineering; 2021 Aug; Lviv, Ukraine. p. 40–45. doi:https://doi.org/10.1109/UKRCON53503.2021.9575331
  • Piltyay S. Electromagnetic and bandwidth performance optimization of new waveguide polarizers with septum of a stepped-thickness type for satellite systems. J Electromagn Waves Appl. 2022;36. doi:https://doi.org/10.1080/09205071.2021.2016500
  • Kirilenko AA, Kulik DY, Rud LA, et al. Compact septum polarizers with a circular output waveguide. V IEEE international Kharkov symposium on physics and engineering of microwaves, millimeter, and submillimeter waves; 2004; Kharkov. p. 686–688.
  • Wang X, Huang X, Jin X. Novel square/rectangle waveguide septum polarizer. Proceedings of IEEE international conference on ubiquitous wireless broadband; 2016; Nanjing.
  • Collin RE. Foundations for microwave engineering. Hoboken (NJ): John Wiley and Sons; 2001.
  • Maas SA. Practical microwave circuits. Norwood: Artech House; 2014.
  • Marcuvitz N. Waveguide handbook. New York (NY): Short Run Press Ltd; 1986.
  • Feldshtein AL, Yavich LR, Smirnov VP. Guide to the elements of waveguide technology. Moscow: Soviet Radio; 1967 (in Russian).
  • Piltyay S, Bulashenko A, Herhil Y, et al. FDTD and FEM simulation of microwave waveguide polarizers. IEEE 2nd international conference on advanced trends in information theory; 2020 Nov; Kyiv, Ukraine. p. 357–363. doi:https://doi.org/10.1109/ATIT50783.2020.9349339
  • Bulashenko A, Piltyay S, Dikhtyaruk I, et al. FDTD and wave matrix simulation of adjustable DBS-band waveguide polarizer. J Electromagn Waves Appl. 2022;36. doi:https://doi.org/10.1080/09205071.2021.1995897
  • Piltyay SI, Bulashenko AV, Kalinichenko YI. Parametric optimization of waveguide polarizer by equivalent network and FEM models. Telecommun Radio Eng. 2021;80(4):49–74. doi:https://doi.org/10.1615/TelecomRadEng.2021037160
  • Piltyay SI, Bulashenko AV, Herhil YY. Numerical performance of FEM and FDTD methods for the simulation of waveguide polarizers. Visnyk NTUU KPI Seriia – Radiotekhnika Radioaparatobuduvannia. 2021;84:11–21. doi:https://doi.org/10.20535/RADAP.2021.84.11-21
  • Bulashenko AV, Piltyay SI, Demchenko IV. Wave matrix technique for waveguide iris polarizers simulation. theory. J Nano- Electron Phys. 2020;12(6):06026-1–06026-5. doi:https://doi.org/10.21272/jnep.12(6).06026
  • Piltyay S, Bulashenko A, Sushko O., et al. Analytical modeling and optimization of new Ku-band tunable square waveguide iris-post polarizer. Int J Numer Model: Electron Netw Dev Fields. 2021;34(5):1–27. doi:https://doi.org/10.1002/JNM.2890
  • Piltyay S, Bulashenko A, Shuliak V, et al. Electromagnetic simulation of new tunable guide polarizers with diaphragms and pins. Adv Electromagn. 2021;10(3):24–30. doi:https://doi.org/10.7716/aem.v10i3.1737
  • Bulashenko A, Piltyay S, Bulashenko O. Mathematical model of a square waveguide polarizer with diaphragms. J Microw Optoelectron Electromagn Appl. 2021;20(4):883–895. doi:https://doi.org/10.1590/2179-10742021v20i41368
  • Piltyay S, Bulashenko A, Shuliak V. Development and optimization of microwave guide polarizers using equivalent network method. J Electromagn Waves Appl. 2022;36. doi:https://doi.org/10.1080/09205071.2021.1980913
  • Bulashenko AV, Piltyay SI, Dikhtyaruk II, et al. Technique of mathematical synthesis of waveguide iris polarizers. J Nano- Electron Phys. 2021;13(5):05024-1–05024-6. doi:https://doi.org/10.21272/jnep.13(5).05024
  • Piltyay S, Bulashenko A, Kalinichenko Y, et al. Mathematical model for the development of tunable polarizers with diaphragms and pins. Telecommun Radio Eng. 2021;80(5):11–27. doi:https://doi.org/10.1615/TelecomRadEng.2021038525
  • Bulashenko AV, Piltyay SI. Equivalent microwave circuit technique for waveguide iris polarizers development. Visnyk NTUU KPI Seriia – Radiotekhnika, Radioaparatobuduvannia. 2020;83:17–28. doi:https://doi.org/10.20535/RADAP.2020.83.17-28
  • Bulashenko AV, Piltyay SI, Kalinichenko YI, et al. Waveguide polarizer for radar and satellite systems. Visnyk NTUU KPI Seriia – Radiotekhnika Radioaparatobuduvannia. 2021;86:5–13. doi:https://doi.org/10.20535/RADAP.2021.86.5-13
  • Bulashenko A, Piltyay S, Bykovskyi O, et al. Synthesis of waveguide diaphragm polarizers using wave matrix approach. IEEE 3rd Ukraine conference on electrical and computer engineering; 2021 Aug; Lviv, Ukraine. p. 111–116. doi:https://doi.org/10.1109/UKRCON53503.2021.9575322
  • Piltyay SI, Bulashenko AV, Demchenko IV. Analytical synthesis of waveguide iris polarizers. Telecommun Radio Eng. 2020;79(18):1579–1597. doi:https://doi.org/10.1615/TelecomRadEng.v79.i18.10
  • Piltyay S, Bulashenko A, Demchenko I. Compact polarizers for satellite information systems. IEEE international conference on Problems of Infocommunications. Science and Technology (PIC S&T); 2020 Oct; Kharkiv, Ukraine. p. 557–562. doi:https://doi.org/10.1109/PICST51311.2020.9467889
  • Bulashenko A, Piltyay S, Demchenko I. Analytical technique for iris polarizers development. IEEE international conference on Problems of Infocommunications. Science and Technology (PIC S&T); 2020 Oct; Kharkiv, Ukraine. p. 593–598. doi:https://doi.org/10.1109/PICST51311.2020.9467981

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.