250
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Design of a compact and efficient 2.4 GHz rectenna system for energy harvesting

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1850-1868 | Received 26 Jul 2021, Accepted 18 Feb 2022, Published online: 06 Mar 2022

References

  • Dziurdzia P, Rodzen Ł, Gorka D, et al. Energy scavenging from waste heat and electromagnetic induction: tests and measurements. 2014 International Conference on Signals and Electronic Systems (ICSES), Poznan University of Technology, Poland; 2014 Sep 11; IEEE. p. 1–4.
  • Dewangan SK, Dubey A. Design & implementation of energy harvesting system using piezoelectric sensors. 2017 international conference on intelligent computing and control systems (ICICCS),Madurai, India; 2017 Jun 15; IEEE. p. 598–601.
  • Brown WC. The history of power transmission by radio waves. IEEE Trans Microw Theory Tech. 1984;32(9):1230–1242.
  • Awais Q, Jin Y, Chattha HT, et al. A compact rectenna system with high conversion efficiency for wireless energy harvesting. IEEE Access. 2018;6:35857–35866.
  • Hu YY, Sun S, Xu H. Compact collinear quasi-Yagi antenna array for wireless energy harvesting. IEEE Access. 2020;8:35308–35317.
  • Lin DB, Chou HT, Chou JH. Antenna pairing for highly efficient wireless power transmission in the reactive near-field region based on mutual coupled impedance compensation. IET Microw Antennas Propag. 2019;14(1):60–65.
  • Sun H, He H, Huang J. Polarization-insensitive rectenna arrays with different power combining strategies. IEEE Antennas Wireless Propag Lett. 2020;19(3):492–496.
  • Ruan T, Chew ZJ, Zhu M. Energy-aware approaches for energy harvesting powered wireless sensor nodes. IEEE Sensors J. 2017;17(7):2165–2173.
  • CES. Samsung’s new TV remote has an exciting battery charging feature (bgr.com); 2022.
  • Niotaki K, Kim S, Jeong S, et al. A compact dual-band rectenna using slot-loaded dual band folded dipole antenna. IEEE Antennas Wireless Propag Lett. 2013;12:1634–1637.
  • Kuhn V, Lahuec C, Seguin F, et al. A multi-band stacked RF energy harvester with RF-to-DC efficiency up to 84%. IEEE Trans Microw Theory Tech. 2015;63(5):1768–1778.
  • Hagerty JA, Helmbrecht FB, McCalpin WH, et al. Recycling ambient microwave energy with broad-band rectenna arrays. IEEE Trans Microw Theory Tech. 2004;52(3):1014–1024.
  • Wang SH, Zheng SY. A compact rectenna for nondirectional ambient RF energy harvesting. 2018 International Symposium on Antennas and Propagation (ISAP), Paradise Hotel Busan; 2018 Oct 23; IEEE. p. 1–2.
  • Takhedmit H, Cirio L, Merabet B, et al. Efficient 2.45 GHz rectenna design including harmonic rejecting rectifier device. Electron Lett. 2010;46(12):811–812.
  • Sun H, Guo YX, He M, et al. A dual-band rectenna using broadband Yagi antenna array for ambient RF power harvesting. IEEE Antennas Wireless Propag Lett. 2013;12:918–921.
  • Kee CP, Olule L, Gnanagurunathan G. Microstrip patch antenna and three-stage cockcroft-walton rectenna for Wi-Fi energy harvesting. 2018 IEEE International RF and Microwave Conference (RFM), Penang; 2018 Dec 17; IEEE. p. 242–245.
  • Wang SH, Zheng SY. A compact rectenna for nondirectional ambient RF energy harvesting. 2018 International Symposium on Antennas and Propagation (ISAP), Paradise Hotel Busan; 2018 Oct 23; IEEE. p. 1–2.
  • Scheeler R, Korhummel S, Popovic Z. A dual-frequency ultralow-power efficient 0.5-g rectenna. IEEE Microw Mag. 2014;15(1):109–114.
  • Takhedmit H, Cirio L, Costa F, et al. Transparent rectenna and rectenna array for RF energy harvesting at 2.45 GHz. The 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, The Netherlands; 2014 Apr 6; IEEE. p. 2970–2972.
  • Lin CH, Chiu CW, Gong JY. A wearable rectenna to harvest low-power RF energy for wireless healthcare applications. 2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI),  Beijing, China; 2018 Oct 13; IEEE. p. 1–5.
  • Wagih M, Hilton GS, Weddell AS, et al. Broadband millimeter-wave textile-based flexible rectenna for wearable energy harvesting. IEEE Trans Microw Theory Tech. 2020;68(11):4960–4972.
  • Zhang BH, Zhang JW, Wu ZP, et al. A 2.45 GHz dielectric resonator rectenna for wireless power transmission. 2017 sixth Asia-pacific Conference on Antennas and Propagation (APCAP), Shaanxi Guesthouse, Xi'an, China.; 2017 Oct 16; IEEE. p. 1–3.
  • Din NM, Chakrabarty CK, Bin Ismail A, et al. Design of RF energy harvesting system for energizing low power devices. Prog Electromagn Res. 2012;132:49–69.
  • Yo TC, Lee CM, Hsu CM, et al. Compact circularly polarized rectenna with unbalanced circular slots. IEEE Trans Antennas Propag. 2008;56(3):882–886.
  • Ahmed S, Zakaria Z, Husain MN, et al. Efficient feeding geometries for rectenna design at 2.45 GHz. Electron Lett. 2017;53(24):1585–1587.
  • Chuma EL, Iano Y, Costa MS, et al. A compact-integrated reconfigurable rectenna array for RF power harvesting with a practical physical structure. Prog Electromagn Res M; 2018;70:89–98.
  • Chuma EL, Yuzo LD, Roger LL, et al. A compact fractal structure based rectenna with the rectifier circuit integrated. 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, California, USA; 2017 Jul 9; IEEE. p. 1607–1608.
  • Naresh B, Singh VK, Bhargavi V, et al. Dual-band wearable rectenna for low-power RF energy harvesting. In: Advances in power systems and energy management, Springer. Singapore: Springer; 2018. p. 13–21.
  • Zeng M, Li Z, Andrenko AS, et al. A compact dual-band rectenna for GSM900 and GSM1800 energy harvesting. Int J Antennas Propag. 2018;p. 1-9.
  • Palazzi V, Hester J, Bito J, et al. A novel ultra-lightweight multiband rectenna on paper for RF energy harvesting in the next generation LTE bands. IEEE Trans Microw Theory Tech. 2017;66(1):366–379.
  • Liu W, Xu L, Zhan H. Design of 2.4 GHz/5 GHz planar dual-band electrically small slot antenna based on impedance matching circuit. AEU-Int J Electron Commun. 2018;83:322–328.
  • Hsu CK, Chung SJ. Compact antenna with U-shaped open-end slot structure for multi-band handset applications. IEEE Trans Antennas Propag. 2013;62(2):929–932.
  • Shen S, Chiu CY, Murch RD. A dual-port triple-band L-probe microstrip patch rectenna for ambient RF energy harvesting. IEEE Antennas Wireless Propag Lett. 2017;16:3071–3074.
  • Tissier J, Latrach M. Broadband rectenna for ambient RF energy harvesting applications. 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Montreal, Canada America; 2017 Aug 19; IEEE. p. 1–3.
  • Vital D, Bhardwaj S, Volakis JL. Textile-based large area RF-power harvesting system for wearable applications. IEEE Trans Antennas Propag. 2019;68(3):2323–2331.
  • Ansys HFSS. Ansys. Pittsburgh, PA: Ansoft Corp.
  • Yadav A, Sethi D, Khanna RK. Slot loaded UWB antenna: dual band notched characteristics. AEU-Int J Electron Commun. 2016;70(3):331–335.
  • Ramachandran M, Ramanadhan I, Elavazhagan SR, et al. Rectenna design of GSM band signal for energy harvesting. Int J Sci Technol Eng. 2017;3(10):221–226.
  • Sim ZW, Shuttleworth R, Alexander MJ, et al. Compact patch antenna design for outdoor RF energy harvesting in wireless sensor networks. Prog Electromagn Res. 2010;105:273–294.
  • Saravanan M, Umarani SM. Gain enhancement of patch antenna integrated with metamaterial inspired superstrate. J Electr Syst Inform Technol. 2018;5(3):263–270.
  • Afrough M, Fakharian MM, Tavakol-Hamedani F. Compact dual-band suspended microstrip slot antenna with an antipodal parasitic element for WLAN applications. Wireless Personal Commun. 2015;83(1):571–579.
  • https://www.electronics-tutorials.ws/blog/voltage-multiplier-circuit.html
  • Shi Y, Jing J, Fan Y, et al. A novel compact broadband rectenna for ambient RF energy harvesting. AEU-Int J Electron Commun. 2018;95:264–270.
  • The advanced design system (ADS). Agilent Corp; 2016.
  • Wang M, Fan Y, Yang L, et al. Compact dual-band rectenna for RF energy harvest based on a tree-like antenna. IET Microw Antennas Propag. 2019;13(9):1350–1357.
  • Erkmen F, Almoneef TS, Ramahi OM. Scalable electromagnetic energy harvesting using frequency-selective surfaces. IEEE Trans Microw Theory Tech. 2018;66(5):2433–2441.
  • Arrawatia M, Baghini MS, Kumar G. Broadband bent triangular omnidirectional antenna for RF energy harvesting. IEEE Antennas Wireless Propag Lett. 2015;15:36–39.
  • Sun H, Guo YX, He M, et al. A dual-band rectenna using broadband Yagi antenna array for ambient RF power harvesting. IEEE Antennas Wireless Propag Lett. 2013;12:918–921.
  • Yang L, Zhou YJ, Zhang C, et al. Compact multiband wireless energy harvesting based battery-free body area networks sensor for mobile healthcare. IEEE J Electromagn RF Microw Med Biol. 2018;2(2):109–115.
  • Muncuk U, Alemdar K, Sarode JD, et al. Multiband ambient RF energy harvesting circuit design for enabling batteryless sensors and IoT. IEEE Internet Things J. 2018;5(4):2700–2714.
  • Mansour MM, Kanaya H. Compact and broadband RF rectifier with 1.5 octave bandwidth based on a simple pair of L-section matching network. IEEE Microw Wireless Compon Lett. 2018;28(4):335–337.
  • Chen YS, Chiu CW. Maximum achievable power conversion efficiency obtained through an optimized rectenna structure for RF energy harvesting. IEEE Trans Antennas Propag. 2017;65(5):2305–2317.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.