164
Views
0
CrossRef citations to date
0
Altmetric
Research Article

EFIE analyses of 3-D scattering from an object above arbitrarily rough periodic surfaces by current decomposition method

ORCID Icon & ORCID Icon
Pages 1882-1898 | Received 22 Sep 2021, Accepted 21 Feb 2022, Published online: 02 Mar 2022

References

  • Ishimaru A, Rockway JD, Kuga Y. Rough surface Green's function based on the first-order modified perturbation and smoothed diagram methods. Waves Random Media. 2000;10:17–31.
  • Altuncu Y. A Numerical Method for Electromagnetic Scattering by 3-D Dielectric Objects Buried under 2-D Locally Rough Surfaces. IEEE Trans Antennas Propag. 2015;63:3634–3643.
  • Guan B, Zhang JF, Zhou XY, et al. Electromagnetic scattering from objects above a rough surface using the method of moments with half-space green's function. IEEE Trans Geosci Remote Sens. 2009;47:3399–3405.
  • Zhang Y, Yang Y, Braunischv H, et al. Electromagnetic wave interaction of conducting object with rough surface by hybrid spm/mom technique – abstract. J Electromagn Waves Appl. 1999;13:983–984.
  • Li XM, Tong CM, Fu SH, et al. Bistatic electromagnetic scattering from a three-dimensional perfect electric conducting object above a Gaussian rough surface based on the Kirchhoff-Helmholtz and electric field integral equation. Waves in Random and Complex Media. 2011;21:389–404.
  • Lawrence DE, Sarabandi K. Electromagnetic scattering from a dielectric cylinder buried beneath a slightly rough surface. IEEE Trans Antennas Propag. 2002;50:1368–1376.
  • Ye H, Jin YQ. A hybrid analytic-numerical algorithm of scattering from an object above a rough surface. IEEE Trans Geosci Remote Sens. 2007;45:1174–1179.
  • Ye H, Jin YQ. A hybrid KA-MoM algorithm for computation of scattering from a 3-D PEC target above a dielectric rough surface. Radio Sci. 2008;43:1–15.
  • Zamani H, Tavakoli A, Dehmollaian M. Scattering by a Dielectric Sphere Buried in a Half-Space with a Slightly Rough Interface. IEEE Trans Antennas Propag. 2018;66:347–359.
  • Wang X, Wang CF, Gan YB, et al. Electromagnetic scattering from a circular target above or below rough surface. Prog Electromagn Res. 2003;40:207–227.
  • Wang X, Li LW. Numerical characterization of bistatic scattering from PEC cylinder partially embedded in a dielectric rough surface interface: Horizontal polarization. Prog Electromagn Res. 2009;91:35–51.
  • Wang X, Gan YB, Li LW. Electromagnetic scattering by partially buried PEC cylinder at the dielectric rough surface interface: TM case. IEEE Antennas Wirel Propag Lett. 2003;2:319–322.
  • Guo LX, Wang AQ, Ma J. Study on EM scattering from 2-D target above 1-D large scale rough surface with low grazing incidence by parallel MOM based on PC Clusters. Prog Electromagn Res. 2009;89:149–166.
  • Bourlier C, Kubické G, Déchamps N. Fast method to compute scattering by a buried object under a randomly rough surface: PILE combined with FB-SA. J Opt Soc Am A. 2008;25:891–902.
  • Burkholder RJ, Pino MR, Obelleiro F. A Monte Carlo study of the rough-sea-surface influence on the radar scattering from two-dimensional ships. IEEE Antennas Propag Mag. 2001;43:25–33.
  • Pino MR, Burkholder RJ, Obelleiro F. Spectral acceleration of the generalized forward-backward method. IEEE Trans Antennas Propag. 2002;50:785–797.
  • Luo W, Nie Z, Chen YP. Fast analysis of electromagnetic scattering from three-dimensional objects straddling the interface of a half space. IEEE Geosci Remote Sens Lett. 2014;11:1205–1209.
  • Zhao K, Vouvakis MN, Lee JF. The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems. IEEE Trans Electromagn Compat. 2005;47:763–773.
  • Bourlier C. Scattering from quasi-planar and moderate rough surfaces: Efficient method to fill the EFIE-Galerkin MoM impedance matrix and to solve the linear system. IEEE Trans Antennas Propag. 2021;69:5761–5770.
  • Bourlier C. Low-grazing angle propagation and scattering by an object above a highly conducting rough sea surface in a ducting environment from an accelerated MoM. Waves in Random and Complex Media. 2018;28:724–742.
  • Geng N, Sullivan A, Carin L. Multilevel fast-multipole algorithm for scattering from conducting targets above or embedded in a lossy half space. IEEE Trans Geosci Remote Sens. 2000;38:1561–1573.
  • Xu RW, Guo LX, He HJ, et al. A Hybrid FEM/MoM Technique for 3-D Electromagnetic Scattering from a Dielectric Object above a Conductive Rough Surface. IEEE Geosci Remote Sens Lett. 2016;13:314–318.
  • Tian G, Ming Tong C, Liu H, et al. An improved MoM-PO hybrid method for scattering from multiple 3-D objects above the 2-D random conducting rough surface. Electromagnetics. 2019;39:375–392.
  • Li J, Guo LX, Chai SR, et al. Electromagnetic scattering from a PEC object above a dielectric rough sea surface by a hybrid PO-PO method. Waves in Random and Complex Media. 2015;25:60–74.
  • Li K, Guo L, Li J, et al. A fast and efficient method for the composite scattering of a coated object above 3D random rough surfaces. IEEE Access. 2018;6:56192–56199.
  • Li C, He SY, Zhu GQ, et al. A hybrid 3DMLUV-ACA method for scattering from a 3-D PEC object above a 2-D gaussian dielectric rough surface. Appl Comput Electromagn Soc J. 2012;27:956–963.
  • Li J, Guo LX, He Q. Hybrid FE-BI-KA method in analysing scattering from dielectric object above sea surface. Electron Lett. 2011;47:1147–1148.
  • Bellez S, Bourlier C, Kubicke G. 3-D Scattering from a PEC Target Buried Beneath a Dielectric Rough Surface: An Efficient PILE-ACA Algorithm for Solving a Hybrid KA-EFIE Formulation. IEEE Trans Antennas Propag. 2015;63:5003–5014.
  • Chen J, Zhu M, Wang M, et al. A hybrid MoM-PO method combining ACA technique for electromagnetic scattering from target above a rough surface. Appl Comput Electromagn Soc J. 2014;29:301–306.
  • Hao JW, Sheng XQ. Accurate and Efficient Simulation Model for the Scattering from a Ship on a Sea-Like Surface. IEEE Geosci Remote Sens Lett. 2017;14:2375–2379.
  • Wei YW, Wang CF, Kee CY, et al. An Accurate Model for the Efficient Simulation of Electromagnetic Scattering from an Object above a Rough Surface with Infinite Extent. IEEE Trans Antennas Propag. 2021;69:1040–1051.
  • Kizilay A, Rothwell EJ. Efficient computation of transient tm scattering from a cylinder above an infinite periodic surface. J Electromagn Waves Appl. 1999;13:943–961.
  • Kizilay A, Rothwell EJ. Transient te scattering from a cylinder above an infinite periodic surface using a decomposition method. J Electromagn Waves Appl. 2001;15:293–314.
  • Makal S, Kizilay A. A decomposition method for the electromagnetic scattering from a conductive object buried in a lossy medium. Appl Comput Electromagn Soc J. 2011;26:340–347.
  • Makal S, Kizilay A. Computation of the scattered fields from a dielectric object buried in a medium with a periodic surface by a decomposition method. IET Microwaves. Antennas Propag. 2011;5:1703–1709.
  • Saynak U, Kizilay A. Computation of the scattered fields from an overfilled cavity embedded in a perfectly conducting ground plane. J Electromagn Waves Appl. 2016;30:1217–1226.
  • Saynak U, Kizilay A. Scattering from a dielectric cylinder partially buried in a dielectric half space with a periodic height profile by a decomposition method. J Electromagn Waves Appl. 2019;33:1014–1026.
  • Hu FG, Song J. Integral-equation analysis of scattering from doubly periodic array of 3-D conducting objects. IEEE Trans Antennas Propag. 2011;59:4569–4578.
  • Simon PS. Modified RWG basis functions for analysis of periodic structures. IEEE MTT-S Int Microw Symp Dig. 2002;3:2029–2032.
  • Singh S, Richards WF, Zinecker JR, et al. Communications: Accelerating the Convergence of Series Representing the Free Space Periodic Green's Function. IEEE Trans Antennas Propag. 1990;38:1958–1962.
  • Jordan KE, Richter GR, Sheng P. An efficient numerical evaluation of the Green's function for the Helmholtz operator on periodic structures. J Comput Phys. 1986;63:222–235.
  • Tai C-T. Dyadic Green functions in electromagnetic theory. 2th ed New York: IEEE Press; 1994.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.