172
Views
0
CrossRef citations to date
0
Altmetric
Research Article

FSS superstrate loaded SIW circular cavity-backed cross-shaped slot antenna for wireless applications

, , & ORCID Icon
Pages 2271-2288 | Received 13 Dec 2021, Accepted 23 Apr 2022, Published online: 09 May 2022

References

  • Yun S, Kim DY, Nam S. Bandwidth enhancement of cavity-backed slot antenna using a via-hole above the slot. IEEE Antennas Wirel Propag Lett. 2012;11:1092–1095.
  • Hung KF, Lin YC. Novel broadband circularly polarized cavity-backed aperture antenna with traveling wave excitation. IEEE Trans Antennas Propag. 2009;58(1):35–42.
  • Filipovic DS, Volakis JL. Design of a multi-functional slot aperture (combo-antenna) for automotive applications. In: IEEE Antennas and Propagation Society International Symposium; 2002 June 16–21; San Antonio (TX): IEEE; 2002. Vol. 2, p. 428–431.
  • Córdoba-Erazo MF, Rodríguez-Solís RA. Cavity-backed folded-slot antenna. In: IEEE Antennas and Propagation Society International Symposium; 2010 Jul 11–17; Toronto: IEEE.
  • Chen Z, Shen Z. A conformal cavity-backed supergain slot antenna. In: IEEE Antennas and Propagation Society International Symposium (APSURSI); 2014 Jul 6–11; Memphis (TN): IEEE; p. 1288–1289.
  • Xu F, Wu K. Guided-wave and leakage characteristics of substrate integrated waveguide. IEEE Trans Microw Theory Techn. 2005;53(1):66–73.
  • Kumar A, Raghavan S. A review: substrate integrated waveguide antennas and arrays. J Telecommun Eng (JTEC). 2016;8(5):95–104.
  • Vala A, Patel A. A multi-band SIW based antenna for wireless communication. Int J Elec Lett. 2021;9(2):203–211.
  • Luo GQ, Hu Z, Li WJ, et al. Bandwidth-enhanced low-profile cavity-backed slot antenna by using hybrid SIW cavity modes. IEEE Trans Antennas Propag. 2012;60(4):1698–1704.
  • Banerjee S, Parui SK. Bandwidth improvement of substrate integrated waveguide cavity-backed slot antenna with dielectric resonators. Microsyst Techol. 2020;26(4):1359–1368.
  • Zhang XH, Luo GQ, Dong LX. Substrate integrated waveguide fed cavity backed slot antenna for circularly polarized application. Int J Antennas Propag. 2013;2013:6. https://doi.org/10.1155/2013/316208
  • Kumar A, Chaturvedi D, Raghavan S. SIW cavity-backed circularly polarized square ring slot antenna with wide axial-ratio bandwidth. AEU-Int J Electron Commun. 2018;94:122–127.
  • Kumar A, Raghavan S. Broadband SIW cavity-backed triangular-ring-slotted antenna for Ku-band applications. AEU-Int J Electron Commun. 2018;87:60–64.
  • Kumar A, Raghavan S. Wideband slotted substrate integrated waveguide cavity-backed antenna for Ku–band application. Microw Opt Technol Lett. 2017;59(7):1613–1619.
  • Kumar A, Raghavan S. Design of a broadband planar cavity-backed circular patch antenna. AEU-Int J Electron Commun. 2018;82:413–419.
  • Dashti H, Shahabadi M, Neshati MH. SIW cavity-backed slot antennas with improved gain. In: Proceedings of the 21st Iranian Conference on Electrical Engineering (ICEE); 2013 May 14–16; Mashhad.
  • Kumar A. Wideband circular cavity-backed slot antenna with conical radiation patterns. Microw Opt Technol Lett. 2020;62(6):2390–2397.
  • Naser- Moghadasi M, Ali-Sadeghzadeh R. A broad band circularly polarized cross slot cavity back array antenna with sequentially rotated feed network for improving gain in X-band application. Int J Microw Wirel Technol. 2017;9(3):705–710.
  • Chaturvedi D, Kumar A, Raghavan S. A nested SIW cavity-backing antenna for Wi-Fi/ISM band applications. IEEE Trans Antennas Propag. 2019;67(4):2775–2780.
  • Gharbi ME, Azizi S, Aknin N. A high gain SIW cavity backed triangular slot antenna. Proced Manufac. 2019;32:675–680.
  • Sun YX, Wu D, Fang XS, et al. Compact quarter-mode substrate-integrated waveguide dual-frequency millimeter-wave antenna array for 5G applications. IEEE Antennas Wirel Propag Lett. 2020;19(8):1405–1409.
  • Jin C, Shen Z. Compact triple-mode filter based on quarter-mode substrate integrated waveguide. IEEE Trans Microw Theory Techn. 2018;62(1):37–45.
  • Chen Q, Liu L, Chen L, et al. Absorptive frequency selective surface using parallel LC resonance. Elec Lett. 2016;52(6):418–419.
  • Arnaud JA, Pelow FA. Resonant-grid quasi-optical diplexers. Bell System Tech J. 1975;54(2):263–283.
  • Lee SW. Scattering by dielectric-loaded screen. IEEE Trans Antennas Prop. 1971;19(5):656–665.
  • Liu N, Sheng X, Zhang C, et al. Design of frequency selective surface structure with high angular stability for radome application. IEEE Wirel Prop Lett. 2017;17(1):138–141.
  • Ou H, Lu F, Liao Y, et al. Tunable terahertz metamaterial for high-efficiency switch application. Results Phys. 2020;16:102897.
  • Marqués R, Baena JD, Beruete M, et al. Ab initio analysis of frequency selective surfaces based on conventional and complementary split ring resonators. J Opt. 2005;7(2):S38.
  • Hosseini M, Pirhadi A, Hakkak M. Design of an AMC with little sensitivity to angle of incidence using an optimized Jerusalem cross FSS. In: IEEE International Workshop on Antenna Technology Small Antennas and Novel Metamaterials; 2006 Mar 6–8; New York: IEEE; p. 245–248.
  • Rashid AK, Zhang Q. Low-Cost terahertz three-dimensional frequency selective structure: efficient analysis and characterization. IEEE Trans THz Sci Techol. 2019;10(1):1–8.
  • Al-Joumayly M, Behdad N. A new technique for design of low-profile, second-order, bandpass frequency selective surfaces. IEEE Trans Antennas Prop. 2009;57(2):452–459.
  • Abadi SMAMH, Behdad N. Design of wideband, FSS-based multibeam antennas using the effective medium approach. IEEE Trans Antennas Prop. 2009;62(11):5557–5564.
  • Sarabandi K, Behdad N. A frequency selective surface with miniaturized elements. IEEE Trans Antennas Prop. 2007;55(5):1239–1245.
  • Fernandes EMF, da Silva MWB, da Silva Briggs L, et al. 2.4–5.8 GHz dual-band patch antenna with FSS reflector for radiation parameters enhancement. AEU-Int J Elec Commun. 2019;108:235–241.
  • Nassr ZA, Zabri SN, Shairi NA, et al. Performance improvement of a slotted square patch antenna using FSS superstrate for wireless application. J Phy.: Conf Ser. 2020: IEEE; Vol. (1502, No. 1).
  • Zaid FNM, Azemi SN, Rashidi CBM. Application of FSS for microstrip antenna for gain enhancement. IOP Conf Ser: Mater Sci Eng. 2020;767(1):012011. https://doi.org/10.1088/1757-899X/767/1/012001
  • Arnmanee P, Phongcharoenpanich C. Improved microstrip antenna with HIS elements and FSS superstrate for 2.4 GHz band applications. Int J Antennas Prop. 2018;2018:11. https://doi.org/10.1155/2018/9145373
  • Asaadi M, Afifi I, Sebak AR. High gain and wideband high dense dielectric patch antenna using FSS superstrate for millimeter-wave applications. IEEE Access. 2018;6:38243–38250.
  • Kushwaha N, Kumar R. Design of a wideband high gain antenna using FSS for circularly polarized applications. AEU – Int J Electron Commun. 2016;70(9):1156–1163.
  • Kurra L, Abegaonkar MP, Basu A, et al. FSS properties of a uniplanar EBG and its application in directivity enhancement of a microstrip antenna. IEEE Wirel Propag Lett. 2016;15:1606–1609.
  • Simruni M, Jam S. Design of high gain, wideband microstrip resonant cavity antenna using FSS superstrate with equivalent circuit model. AEU-Int J Electron Commun. 2019;112:152935.
  • Peddakrishna S, Khan T. Performance improvement of slotted elliptical patch antenna using FSS superstrate. Int J RF Microw Computer-Aided Eng. 2018;28(9):e21421.
  • Brito ACRD, Abreu ASD, D'Assunção AG, et al. Effects of an FSS reflector on a microstrip line fed bow-tie slot antenna. J Microw Opt Electromagn Appl. 2020;19:309–326.
  • Zhu H, Yu Y, Li X, et al. A wideband and high gain dual-polarzied antenna design by a frequency-selective surface for WLAN application. Prog Electromagn Res C. 2014;54:57–66.
  • Banerjee S, Rana B, Parui SK. Gain augmentation of a HMSIW based equilateral triangular antenna using CRSF FSS superstrate. Radio Eng. 2018;27(1):47–53.
  • Rana B, Chatterjee A, Parui SK. Gain enhancement of a dual-polarized dielectric resonator antenna using polarization independent FSS. Microw Opt Techol Lett. 2016;58(6):1415–1420.
  • Pozar DM. Microwave engineering. 3rd ed. New York: Wiley; 2011.
  • Zvere AI. Handbook of filter synthesis. New York: Wiley; 1967.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.