137
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Analysis and design of double negative metamaterial offering seven operating bands with minimum frequency ratio

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2384-2400 | Received 27 Jun 2021, Accepted 16 May 2022, Published online: 23 Jun 2022

References

  • Pendry JB, Holden AJ, Stewart WJ, et al. Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett.; 1996. doi:10.1103/PhysRevLett.76.4773
  • Pendry JB, Holden AJ, Robbins DJ, et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microw Theory Tech.; 1999. doi:10.1109/22.798002
  • Smith DR, Padilla WJ, Vier DC, et al. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett.; 2000. doi:10.1103/PhysRevLett.84.4184
  • Yen TJ, Padilla WJ, Fang N, et al. Terahertz magnetic response from artificial materials. Science. 2004;(80). doi:10.1126/science.1094025
  • Linden S, Enkrich C, Wegener M, et al. Magnetic response of metamaterials at 100 terahertz. Science. 2004;(80). doi:10.1126/science.1105371
  • Soukoulis CM, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat Photonics.; 2011. doi:10.1038/nphoton.2011.154
  • Del Vescovo D, Giorgio I. Dynamic problems for metamaterials: review of existing models and ideas for further research. Int J Eng Sci.; 2014. doi:10.1016/j.ijengsci.2014.02.022
  • Veselago VG. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov Phys Uspekhi.; 1968. doi:10.1070/pu1968v010n04abeh003699
  • Shelby RA, Smith DR, Schultz S. Experimental verification of a negative index of refraction. Science. 2001;(80). doi:10.1126/science.1058847
  • Smith DR, Vier DC, Koschny T, et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E Stat Nonlinear Soft Matter Phys.; 2005. doi:10.1103/Phys-RevE.71.036617
  • Smith DR, Schultz S, Markoš P, et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B Condens Matter Mater Phys.; 2002. doi:10.1103/PhysRevB.65.195104
  • Leonhardt U. Optical conformal mapping. Science. 2006;(80). doi:10.1126/science.1126493
  • Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science. 2006;(80). doi:10.1126/science.1125907
  • Schurig D, Mock JJ, Justice BJ, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science. 2006;(80). doi:10.1126/science.1133628
  • Dong HW, Zhao SD, Wei P, et al. Systematic design and realization of double-negative acoustic metamaterials by topology optimization. Acta Mater.; 2019. doi:10.1016/j.actamat.2019.04.042
  • Kim H, Seo C. Inverse class-f power amplifier using the metamaterial structure on the harmonic control circuit. Microw Opt Technol Lett.; 2008. doi:10.1002/mop.23836
  • Brito DB, D’Assunção AG, Maniçoba RHC, et al. Metamaterial inspired Fabry-Pérot antenna with cascaded frequency selective surfaces. Microw Opt Technol Lett.; 2013. doi:10.1002/mop.27531
  • Lee CJ, Leong KMKH, Itoh T. Metamaterial transmission line based bandstop and bandpass filter designs using broadband phase cancellation. IEEE MTT-S Int Microw Symp Dig.; 2006. doi:10.1109/MWSYM.2006.249870
  • Cheng Y, Fan J, Luo H, et al. Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial. IEEE Access.; 2020. doi:10.1109/ACCESS.2019.2962299
  • Pires ES, Fontgalland G, Melo MAB, et al. Metamaterial-inspired wire antennas. IEEE Trans Magn.; 2013. doi:10.1109/TMAG.2013.2245640
  • Chaurasia P, Kanaujia BK, Dwari S, et al. Design and analysis of seven-bands-slot-antenna with small frequency ratio for different wireless applications. AEU Int J Electron Commun. 2019;99:100–109. doi:10.1016/j.aeue.2018.11.036
  • Li W, Cheng Y. Dual-band tunable terahertz perfect metamaterial absorber based on strontium titanate (STO) resonator structure. Opt Commun.; 2020. doi:10.1016/j.optcom.2020.125265
  • Cheng Y, Li W, Mao X. Triple-band polarization angle independent 90° polarization rotator based on Fermat’s spiral structure planar chiral metamaterial. Prog Electromagn Res.; 2019. doi:10.2528/pier18112603
  • Zou H, Cheng Y. Design of a six-band terahertz metamaterial absorber for temperature sensing application. Opt Mater (Amst).; 2019. doi:10.1016/j.optmat.2019.01.002
  • Cheng Y, Zou Y, Luo H, et al. Compact ultra-thin seven-band microwave metamaterial absorber based on a single resonator structure. J Electron Mater.; 2019. doi:10.1007/s11664-019-07156-z
  • Lavazec D, Cumunel G, Duhamel D, et al. Experimental evaluation and model of a nonlinear absorber for vibration attenuation. Commun Nonlinear Sci Numer Simul.; 2019. doi:10.1016/j.cnsns.2018.10.009
  • Nasimuddin N, Chen ZN, Qing X. Dual-band circularly polarized S-shaped slotted patch antenna with a small frequency-ratio. IEEE Trans Antennas Propag. 2010;58(6):2112–2115.
  • Bao XL, Ammann MJ. Dual-frequency circularly-polarized patch antenna with compact size and small frequency ratio. IEEE Trans Antennas Propag. 2007;55(7):2104–2107.
  • Kumar S, Khandelwal MK, Kanaujia BK, et al. Stacked dual-band circularly polarized microstrip antenna with small frequency ratio. Micro Opt Tech Lett. 2014;56(8):1933–1937.
  • Kumar S, Khandelwal MK, Kanaujia BK, et al. Single-feed circularly polarized stacked patch antenna with small frequency ratio for dual-band wireless applications. Int J Microw Wirel Technol. 2016;8(8):1207–1213.
  • Chen CH, Yung EKN. Dual-band circularly-polarized CPW-fed slot antenna with a small frequency ratio and wide bandwidths. IEEE Trans Antennas Propag. 2011;59(4):1379–1384.
  • Zhang X, Sun H, Zhang X. Design and analysis of a novel LHM structure realized in low-frequency band. IEEE Trans Magn.; 2019. doi:10.1109/tmag.2019.2896275
  • Zhang X, Zhao Y, Ho SL, et al. Analysis of wireless power transfer system based on 3-D finite-element method including displacement current. IEEE Trans Magn.; 2012. doi:10.1109/TMAG.2012.2196263
  • Markos P, Soukoulis C. Transmission properties and effective electromagnetic parameters of double negative metamaterials. Opt Express.; 2003. doi:10.1364/oe.11.000649
  • Ziolkowski RW. Design, fabrication, and testing of double negative metamaterials. IEEE Trans Antennas Propag.; 2003. doi:10.1109/TAP.2003.813622
  • Chen X, Grzegorczyk TM, Wu BI, et al. Robust method to retrieve the constitutive effective parameters of metamaterials. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscipl Top.; 2004. doi:10.1103/PhysRevE.70.016608
  • Arslanagić S, Hansen TV, Mortensen NA, et al. A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization. IEEE Antennas Propag Mag.; 2013. doi:10.1109/MAP.2013.6529320
  • Numan AB, Sharawi MS. Extraction of material parameters for metamaterials using a full-wave simulator [education column]. IEEE Antennas Propag Mag.; 2013. doi:10.1109/MAP.2013.6735515
  • Khandelwal MK, Arora A, Kumar S, et al. Dual band double negative (DNG) metamaterial with small frequency ratio. J Electromagn Waves Appl.; 2018. doi:10.1080/09205071.2018.1498026
  • Caloz C, Itoh T. Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip “LH line”. IEEE Antennas Propag Soc AP-S Int Symp.; 2002. doi:10.1109/aps.2002.1016111
  • Caloz C, Itoh T. Electromagnetic metamaterials: transmission line theory and microwave applications: the engineering approach.; 2005. doi:10.1002/0471754323
  • Nuthakki VR, Dhamodharan S. Via-less CRLH-TL unit cells loaded compact and bandwidth-enhanced metamaterial-based antennas. AEU Int J Electron Commun.; 2017. doi:10.1016/j.aeue.2017.06.033
  • Chi PL, Shih YS. Compact and bandwidth-enhanced zeroth-order resonant antenna. IEEE Antennas Wirel Propag Lett.; 2015. doi:10.1109/LAWP.2014.2363087
  • Sharma SK, Chaudhary RK. A compact zeroth-order resonating wideband antenna with dual-band characteristics. IEEE Antennas Wirel Propag Lett.; 2015. doi:10.1109/LAWP.2015.2417-889
  • Bahl IJ. Lumped elements for RF and microwave circuits. Artech; 2003.
  • Bilotti F, Toscano A, Vegni L. Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples. IEEE Trans Antennas Propag. 2007;55(8):2258–2267. doi:10.1109/tap.2007.901950
  • Bilotti F, Toscano A, Vegni L, et al. Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions. IEEE Trans Microw Theory Techniques. 2007;55(12):2865–2873. doi:10.1109/tmtt.2007.909611

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.