216
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Far-field scattering regulation of all dielectric material metagratings based on the addition principle of coding elements

, , , , , , , , & show all
Pages 2435-2449 | Received 08 Nov 2021, Accepted 31 May 2022, Published online: 07 Jun 2022

References

  • Junxiang H, Tao F, Haiou L, et al. A reconfigurable terahertz polarization converter based on metal–graphene hybrid metasurface. Chin. Opt. Lett. 2020;18:013102.
  • Shuyun T, Qi Z, Han W, et al. Conversion between polarization states based on metasurface. Photonics Res. 2019;7(3):246–250.
  • Lin L, Quan Y, Run C, et al. Chromatic dispersion manipulation based on metasurface devices in the mid-infrared region. Chin. Opt. Lett. 2020;18:082401.
  • Junyu X, Ruiwen X, Rongxuan Z, et al. Tunable terahertz absorber based on transparent and flexible metamaterial. Chin. Opt. Lett. 2020;18:092403–092403.
  • Obulkasim O, Zi Liang L, Bai Song X. Asymmetric pulse effects on pair production in polarized electric fields. High Power Laser Sci. Eng. 2020;8(4):04000e38.
  • Lei X, Yuanzhang H, Wenyu C, et al. Decoupling of the position and angular errors in laser pointing with a neural network method. High Power Laser Sci. Eng. 2020;8(3):03000e28.
  • Johannes H, Zobus Y, Boller P, et al. Enhancement of the laser-driven proton source at PHELIX. High Power Laser Sci. Eng. 2020;8(2):02000e24.
  • Fei D, Yiting C, Sergey IB. Gap-surface plasmon metasurfaces for linear-polarization conversion focusing and beam splitting. Photon Res. 2020;8:707–714.
  • Xueqian Z, Quan X, Lingbo X, et al. Terahertz surface plasmonic waves: a review. Adv. Photon. 2020;2(1):014001.
  • Akram MR, Ding G, Ke C, et al. Ultra-thin single layer metasurfaces with ultra-wideband operation for both transmission and reflection. Adv. Mater. 2020;32:1907308.
  • Bo F, Zhiyu C, Yandong P, et al. Realization of ultrahigh refractive index in terahertz region by multiple layers coupled metal ring metamaterials. J Electromagnet Wave. 2019;33(11):1375–1390.
  • Bo F, Boya L, Yandong P, et al. Polarization-independent multiband metamaterials absorber by fundamental cavity mode of multilayer microstructure. Microw. Opt. Technol. Lett. 2019;61:2385–2391.
  • Weimin W, Xufeng J, Jingyin Z, et al. Improvement of accuracy of simple methods for design and analysis of a blazed phase grating microstructure. Opt. Appl. 2017;47(2):183–198.
  • Li J, Bo F, Zhigang Y, et al. Improvement of unidirectional scattering characteristics based on multiple nanospheres array. Microw Opt Techn Let. 2020;62(6):2405–2414.
  • Xufeng J, Xincui G, Pengwei Z, et al. Physical explanation of Fabry-Pérot cavity for broadband bilayer metamaterials polarization converter. J. Light. Technol. 2018;36(12):2322–2327.
  • Rui X, Xufeng J, Xincui G, et al. Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials. Opt. Mater. Express. 2017;7(3):977–988.
  • Akram MR, Mehmood MQ, Xudong B, et al. High efficiency ultra-thin transmissive metasurfaces. Adv. Opt. Mater. 2019;7:1801628.
  • Akram MR, Xudong B, Ronghong J, et al. Photon spin Hall effect based ultra-thin transmissive metasurface for efficient generation of OAM waves. IEEE Trans. Antennas Propag. 2019;67(7):4650–4658.
  • Jingyin Z, Xufeng J, Weimin W, et al. Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz region. Opt Laser Technol. 2017;95:56–62.
  • Ying T, Xufeng J, Haiyong G, et al. Free control of far-field scattering angle of transmission terahertz wave using multilayer split-ring resonators’ metasurfaces. Front. Phys. 2020;15:62502.
  • Yangyang F, Yue F, Daxing D, et al. Photonic spin Hall effect in PT symmetric metamaterials. Front. Phys. 2019;14:62601.
  • Yyangyang F, Jiaqi T, Ailing S, et al. Controllably asymmetric beam splitting via gap-induced diffraction channel transition in dual-layer binary metagratings. Front. Phys. 2020;15:52502.
  • Jianping L, Ronghong J, Junping G, et al. Design of a broadband metasurface Luneburg lens for full-angle operation. IEEE Trans. Antennas Propag. 2019;67(4):2442–2451.
  • Xiaoqing L, Xiangyu Z, Haoran L, et al. Polarization controllable plasmonic focusing based on nanometer holes. Nanotechnology. 2020;135201–135201.
  • Haoran L, Xiaoqing L, Yuansheng H, et al. Metasurface cylindrical vector light generators based on nanometer holes. New J. Phys. 2019;21:123047.
  • Haoran L, Xiaoqing L, Yuansheng H, et al. Multifocal metalens with a controllable intensity ratio. Opt. Lett. 2019;44(10):2518–2521.
  • Han W, Lixia L, Changda Z, et al. Vortex beam generation with variable topological charge based on a spiral slit. Nanophotonics. 2019;8(2):317–324.
  • Xufeng J, Shangzhong J, Ying T, et al. Analysis of the sinusoidal nanopatterning grating structure. Opt Laser Technol. 2013;48:160–166.
  • Xufeng J, Xu Y, Haiyong G, et al. High refractive index metamaterials by using higher order modes resonances of hollow cylindrical nanostructure in visible region. IEEE Access. 2019;7:144945–144956.
  • Li J, Bo F, Zhigang Y, et al. Terahertz high and near-zero refractive index metamaterials by double layer metal ring microstructure. Opt Laser Technol. 2020;123:105949.
  • Xiaoyong H. Tunable terahertz graphene metamaterials. Carbon. 2015;82:229–237.
  • Xiaoyong H, Zh X, Fangting L, et al. Investigation of graphene assisted tunable terahertz metamaterials absorber. Opt. Mater. Express. 2016;6:331–342.
  • Cui TJ, Qi MQ, Xiang W, et al. Coding metamaterials. digital metamaterials and programmable metamaterials. Light: Sci. Appl. 2014;3(10):e218.
  • Hengyi S, Changqing G, Xinlei C, et al. Broadband and broad-angle polarization-independent metasurface for radar cross section reduction. Sci. Rep. 2017;7(1):40782–40782.
  • Meiqing Q, Wenxuan T, Huifeng M, et al. Suppressing side-lobe radiations of horn Antenna by loading metamaterial lens. Sci. Rep. 2015;5:9113.
  • Shuo L, Tiejun C, Zh L, et al. Convolution operations on coding metasurface to reach flexible and continuous Controls of terahertz beams. Adv. Sci. 2016;3:1600156.
  • Wu RY, Shi CB, Liu S, et al. Addition theorem for digital coding metamaterials. Adv. Opt. Mater. 2018;6:1701236.
  • Fan B, Zhongling B, Xiong W. Metasurface-based broadband orbital angular momentum generator in millimeter wave region. Opt. Express. 2018;26:25693–25705.
  • Shan J, Chang C, Hualiang Z, et al. Achromatic electromagnetic metasurface for generating a vortex wave with orbital angular momentum (OAM). Opt. Express. 2018;26:6466–6477.
  • Akram MR, Ding G, Chen K, et al. Ultrathin single layer metasurfaces with ultra-wideband operation for both transmission and reflection. ADV MATER. 2020;32:1907308.
  • Yuzhou R, Tong C, Lihua S, et al. High-Performance transmissive broadband vortex beam generator based on Pancharatnam-Berry metasurface. IEEE Access. 2020;8:111802–111810.
  • Hailong Z, Jianji D, Siqi Y, et al. Generation of terahertz vortices using metasurface With circular slits. IEEE Photon. 2014;6(6):5900107.
  • Huan Z, Baogang Q, Xinke W, et al. Demonstration of orbital angular momentum multiplexing and demultiplexing based on a metasurface in the terahertz band. ACS Photonics. 2018;5(5):1726–1732.
  • Junpeng F, Yongzhi C. Broadband high-efficiency cross-polarization conversion and multi-functional wavefront manipulation based on chiral structure metasurface for terahertz wave. J. Phys. D. 2020;53(2):025109.
  • XiaoFei Z, YiMing Z, ChenXi M, et al. Manipulating terahertz plasmonic vortex based on geometric and dynamic phase. Adv. Opt. Mat. 2019;7(3):1801328.
  • Yang Y, Wang W, Moitra P, et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett. 2014;14(3):1394–1399.
  • Mingbo P, Xiong L, Xiaoliang M, et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv. 2015;1(9):e1500396.
  • Grady NK, Heyes JE, Chowdhury DR, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Sci. 2013;340(6138):1304–1307.
  • Shuo L, Haochi Z, Zh L, et al. Full-State Controls of Terahertz waves using tensor coding metasurfaces. ACS Appl. Mater. 2017;9(25):21503–21514.
  • Nanfang Y, Patrice G, Mikhal AK, et al. Light propagation with phase discontinuities: generalized laws of Reflection and refraction. Sci. 2011;334(6054):333–337.
  • Shou L, Tiejun C. Concepts, working principles, and applications of coding and programmable metamaterials. Adv. Opt. Mater. 2017;1700624–1700624.
  • Tiejun C, Shou L, Lianli L. Information entropy of coding metasurface. Light Sci. Appl. 2016;5(11):e16172.
  • Ting-Tso Y, Simone G, Agostino M, et al. Ultra-broad and sharp-transition bandpass terahertz filters by hybridizing multiple resonances mode in monolithic metamaterials. Opt. Express. 2012;20(7):7580.
  • Yusheng L, You Q, Fusheng M, et al. Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators. Appl. Phys. Lett. 2013;102(11):111908.
  • Yanhan Z, Subash V, Yong Z, et al. Tunable dual-band terahertz metamaterial bandpass filters. Opt. Lett. 2013;38(14):2382–2384.
  • Savo S, Shrekenhamer D, Padilla WJ. Liquid crystal metamaterial absorber spatial Light modulator for THz applications. Adv. Opt. Mater. 2014;2(3):275–279.
  • Shuo L, Chen H, Cui TJ. A broadband terahertz absorber using multi-layer stacked bars. Appl. Phys. Lett. 2015;106(15):151601.
  • Longqing C, Ningning X, Jiaguang H, et al. A Tunable dispersion-free terahertz metadevice with pancharatnam-berry-phase-enabled modulation and polarization control. Adv. Mater. 2015;27(42):6630–6636.
  • Renrao F, Zh Y, Xiaoping R, et al. Freely Tunable broadband polarization rotator for terahertz waves. Adv. Mater. 2015;27(7):1201–1206.
  • Unlu M, Hashemi MR, Berry CW. Switchable scattering meta-surfaces for broadband terahertz modulation. Sci. Rep. 2014;4:5708.
  • Karl N, Reichel K, Chen HT, et al. An electrically driven terahertz metamaterial diffractive modulator with more than 20 dB of dynamic range. Appl. Phys. Lett. 2014;104(9):091115.
  • Dandan W, Fuyong Y, Guixin L, et al. Helicity multiplexed broadband metasurface holograms. Nat. Commun. 2015;6:8241.
  • Guoxing Z, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol. 2015;10(4):308–312.
  • Linwei Z, Yaoyu C, Qiuqun C, et al. Near-perfect fidelity polarization-encoded multilayer optical data storage based on aligned gold nanorods. Opto-Electron Adv. 2021;4:210002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.