144
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Sub-1 GHz and sub-6 GHz reconfigurable MIMO antenna with 28 GHz array on shared chassis for user equipment’s (UEs)

, ORCID Icon &
Pages 2473-2482 | Received 07 Apr 2021, Accepted 09 Jun 2022, Published online: 21 Jun 2022

References

  • Rappaport TS, Sun S, Mayzus R, et al. Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access. 2013;1:335–349.
  • A Technology Vision-Huawei. Shenzhen: China. 2013. Available from: HW_329327.pdf (huawei.com).
  • Gubbi J, Buyya R, Marusic S, et al. Internet of things (IoT): a vision, architectural elements, and future directions. Future Gener Comput Syst. 2013;29(7):1645–1660.
  • Jha KR, Bukhari B, Singh C, et al. Compact planar multi-standard MIMO antennas for IOT applications. IEEE Trans Antennas Propag. 2018;66(7):3327–3336.
  • Rappaport TS, Xing Y, MacCartney GR, et al. Overview of millimeter wave communications for fifth-generation (5G) wireless networks – with a focus on propagation models. IEEE Trans Antennas Propag. 2017;65(12):6213–6230.
  • Hong W, Jiang ZH, Yu C, et al. Multibeam antenna technologies for 5G wireless communications. IEEE Trans Antennas Propag. 2017;65(12):6231–6249.
  • Liu D, Hong W, Rappaport TS, et al. What will 5G antennas and propagation be? IEEE Trans Antennas Propag. 2017;65(12):6205–6212.
  • Marcus MJ. 5G and “IMT for 2020 and beyond”. IEEE Wirel Commun. 2015;22(4):2–3.
  • Al-Saif H, Usman M, Chughtai MT, et al. Compact ultra-wide band MIMO antenna system for lower 5G bands. Wirel Commun Mob Comput. 2018. Article ID 2396873.
  • Watanabe F. Real challenge of mobile networks toward 5G – an expectation for antennas & propagation. IEICE Trans Commun. 2019;E102.B(2):182–188.
  • Yang QL, Ban YL, Kang K, et al. SIW multibeam array for 5G mobile devices. IEEE Access. 2016;4:2788–2796.
  • Yu B, Yang K, Sim CYD, et al. A novel 28 GHz beam steering array for 5G mobile device with metallic casing application. IEEE Trans Antennas Propag. 2018;66(1):462–466.
  • Ojaroudiparchin N, Shen M, Zhang S, et al. A switchable 3-D-coverage-phased array antenna package for 5G mobile terminals. IEEE Antennas Wirel Propag Letts. 2016;15:1747–1750.
  • Yang B, Yu Z, Lan J, et al. Digital beamforming-based massive MIMO transceiver for 5G millimeter wave communications. IEEE Trans Microw Theory Tech. 2018;66(7):3403–3418.
  • Kim Y, Hong W. Coexistence issues concerning 4G and mm wave 5G antennas for mobile terminals. In: Proceedings of the 6th Asia Pacific Conference on Antennas Propag.; 2017 Oct. 16-19; Shaanxi, China, p. 1–3.
  • Ban YL, Li C, Sim CYD, et al. 4G/5G multiple antennas for future multi-mode smartphone applications. IEEE Access. 2016;4:2981–2988.
  • Yassin ME, Mohamed HA, Abdallah EAF, et al. Single-fed 4G/5G multiband 2.4/5.5/28 GHz antenna. IET Microw Antennas Propag. 2019;13(3):286–290.
  • Leung M. 3D Simulation software | SIMULIA Systems. Available from: https://www.cst.com/solutions/article/simulation-enabled-5g-antenna-desgin.
  • Biswal SP, Sharma SK, Das S. Collocated microstrip slot MIMO antennas for cellular bands along with 5G phased array antenna for user equipments (UEs). IEEE Access. 2020;8:209138–209152.
  • Kurvinen J, Kähkönen H, Lehtovuori A, et al. Co-designed mm-wave and LTE handset antennas. IEEE Trans Antennas Propag. 2019;67(3):1545–1552.
  • Taheri MMS, Abdipour A, Zhang S, et al. Integrated millimeter-wave wideband end-fire 5G beam steerable array and low-frequency 4G LTE antenna in mobile terminals. IEEE Trans Antennas Propag. 2019;68(4):4042–4046.
  • Cano RR, Zhang S, Zhao K, et al. Reduction of main beam-blockage in an integrated 5G array with a metal-frame antenna. IEEE Trans Antennas Propag. 2019;67(5):3161–3170.
  • Ikram M, Abbas EA, Trong NN, et al. Integrated frequency-reconfigurable slot antenna and connected slot antenna array for 4G and 5G mobile handsets. IEEE Trans Antennas Propag. 2019;67(12):7225–7233.
  • Naqvi SI, Naqvi AH, Arshad F, et al. An integrated antenna system for 4G and millimeter-wave 5G future handheld devices. IEEE Access. 2019;7:116555–116566.
  • Lau BK, Manteuffel D, Arai H, et al. Guest editorial theory and applications of characteristic modes. IEEE Trans Antennas Propag. 2016;64(7):2590–2595.
  • Wu Q. General metallic-dielectric structures: a characteristic mode analysis using volume surface formulations. IEEE Antennas Propag Magz. 2019;61(3):27–36.
  • Wang C, Chen Y, Yang S. Bandwidth enhancement of a dual–polarized slot antenna using characteristic modes. IEEE Antennas Wirel Propag Letts. 2018;17(6):988–992.
  • Jha KR, Sharma SK. Combination of MIMO antennas for handheld devices. IEEE Antennas Propag Magz. 2018;60(1):118–131.
  • Genovesi S, Candia AD, Monorchio A. Compact and low profile frequency agile antenna for multistandard wireless communication systems. IEEE Trans Antennas Propag. 2016;62(3):1019–1026.
  • Miers ZT. Systematic antenna design using the theory of characteristic modes [dissertation]. Sweden: Lund University Sweden; 2016.
  • Chen Y, Wang CF. Characteristic modes: theory and applications in antenna engineering. New Jersey: John Wiley and Sons; 2015.
  • Balanis CA. Antenna theory and design. New Jersey: John Wiley and Sons; 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.