401
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Pixelated bicontrollable metasurface absorber tunable in complete X band

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2505-2518 | Received 10 Mar 2022, Accepted 13 Jun 2022, Published online: 23 Jun 2022

References

  • Walia S, Shah CM, Gutruf P, et al. Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro– and nano–scales. Appl Phys Rev. 2015;2(1):Article ID 011303.
  • Landy NI, Sajuyigbe S, Mock JJ, et al. Perfect metamaterial absorber. Phys Rev Lett. 2008;100(20):Article ID 207402.
  • Chiadini F, Lakhtakia A. Bicontrollable terahertz metasurface with subwavelength scattering elements of two different materials. Appl Opt. 2018;57(2):189–196.
  • Ortiz JD, Baena JD, Losada V, et al. Self-complementary metasurface for designing narrow band pass/stop filter. IEEE Microw Wirel Compon Lett. 2013;23(6):291–293.
  • Kurosawa H, Choi B, Sugimoto Y, et al. High-performance metasurface polarizers with extinction ratios exceeding 12000. Opt Express. 2017;25(4):4446–4455.
  • Zhang X, Liu Z. Superlenses to overcome the diffraction limit. Nat Mater. 2008;7(6):435–441.
  • Ghaderi B, Nayyeri V, Soleimani M, et al. Pixelated metasurface for dual-band and multi-polarization electromagnetic energy harvesting. Sci Rep. 2018;8(1):Article ID 13227.
  • Park I. Application of metasurfaces in the design of performance-enhanced low-profile antennas. Eur Phys J Appl Metamaterials. 2018;5):Article ID 11.
  • Tirkey MM, Gupta N. The quest for perfect electromagnetic absorber: A review. Int J Microw Wirel Technol. 2019;11(2):151–167.
  • Joy V, Dileep A, Abhilash PV, et al. Metasurface for stealth applications: A comprehensive review. J Electron Mater. 2021;50(6):3129–3148.
  • Fan K, Suen J Y, Liu X. All-dielectric metasurface absorbers for uncooled terahertz imaging. Optica. 2017;4(6):601–604.
  • Chen F, Cheng Y, Luo H. Temperature tunable narrow-band terahertz metasurface absorber based on InSb micro-cylinder arrays for enhanced sensing application. IEEE Access. 2020;8:82981–82988.
  • Islam MS, Sultana J, Biabanifard M, et al. Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing. Carbon. 2020;158:559–567.
  • Cheng Y, Chen F, Luo H. Triple-band perfect light absorber based on hybrid metasurface for sensing application. Nanoscale Res Lett. 2020;15:Article ID 103.
  • Butt MA, Khonina SN, Kazanskiy NL, et al. Hybrid metasurface perfect absorbers for temperature and biosensing applications. Opt Mater. 2022;123:Article ID 111906.
  • Li A, Luo Z, Wakatsuchi H, et al. Nonlinear, active, and tunable metasurfaces for advanced electromagnetics applications. IEEE Access. 2017;5:27439–27452.
  • Li A, Kim S, Luo Y, et al. High-power transistor-based tunable and switchable metasurface absorber. IEEE Trans Microw Theory Tech. 2017;65(8):2810–2818.
  • Yi D, Wei X-C, Xu Y-L. Tunable microwave absorber based on pattered graphene. IEEE Trans Microw Theory Tech. 2017;65(8):2819–2826.
  • Kumar P, Lakhtakia A, Jain PK. Graphene pixel-based polarization-insensitive metasurface for almost perfect and wideband terahertz absorption. J Opt Soc Am B. 2019;36(8):F84–F88.
  • Li W, Wei J, Wang W, et al. Ferrite-based metamaterial microwave absorber with absorption frequency magnetically tunable in a wide range. Mater Des. 2016;110:27–34.
  • Yuan H, Zhu BO, Feng Y. A frequency and bandwidth tunable metamaterial absorber in x-band. J Appl Phys. 2015;117(17):Article ID 173103.
  • Lee D, Jeong H, Lim S. Electronically switchable broadband metamaterial absorber. Sci Rep. 2017;7(1):Article ID 4891.
  • Huang Y, Wen G, Zhu W, et al. Experimental demonstration of magnetically tunable ferrite based metamaterial absorber. Opt Express. 2014;22(13):16408–16417.
  • Lakhtakia A, Wolfe DE, Horn MW, et al. Bioinspired multicontrollable metasurfaces and metamaterials for terahertz applications. Proc SPIE. 2017;10162:Article ID 101620V.
  • Sharma G, Lakhtakia A, Bhattacharyya S, et al. Magnetically tunable metasurface comprising InAs and InSb pixels for absorbing terahertz radiation. Appl Opt. 2020;59(31):9673–9680.
  • Kumar P, Lakhtakia A, Jain PK. Tricontrollable pixelated metasurface for absorbing terahertz radiation. Appl Opt. 2019;58(35):9614–9623.
  • Kumar P, Lakhtakia A, Jain PK. Tricontrollable pixelated metasurface for stopband for terahertz radiation. J Electromagn Waves Appl. 2020;34(15):2065–2078.
  • Sheta EM, Choudhury PK, Ibrahim A-BMA. Impact of metasurface deformation on the graphene-SrTiO 3 pixelated metamaterial-based sensor. Optik. 2021;242:Article ID 167174.
  • Agrahari R, Lakhtakia A, Jain PK, et al. Pixelated metasurfaces for linear-polarization conversion and absorption. J Electromagn Waves Appl. 2022;36(7):1008–1019.
  • CST Microwave StudioTM. [Accessed 2022 Mar 3]. Available from: https://www.3ds.com/products-services/simulia/products/cst-studio-suite/solvers/.
  • Chen HC. Theory of electromagnetic waves: a coordinate-free approach. New York (NY): McGraw–Hill; 1983.
  • Hinderks LW, Maione A. Copper conductivity at millimeter-wave frequencies. Bell Syst Techn J. 1980;59(1):43–65.
  • DunlapJr WC, Watters RL. Direct measurement of the dielectric constants of silicon and germanium. Phys Rev. 1953;92(6):1396–1397.
  • Pozar DM. Microwave engineering. Hoboken (NJ): Wiley; 2011.
  • Qiu K, Jin J, Liu Z, et al. A novel thermo–tunable band–stop filter employing a conductive rubber split–ring resonator. Mater Des. 2017;116:309–315.
  • Mackay TG, Lakhtakia A. The transfer-matrix method in electromagnetics and optics. San Rafael (CA): Morgan & Claypool; 2020.
  • Costa F, Monorchio A, Manara G. An overview of equivalent circuit modeling techniques of frequency selective surfaces and metasurfaces. Appl Comput Electromagn Soc J. 2014;29(12):960–976.
  • AWR Microwave OfficeTM. [Accessed 2022 Mar 3]. Available from: https://www.awr.com/awr-software/products/microwave-office.
  • Tirkey MM, Gupta N. Design simulation [sic] and analysis of a polarization independent ultrathin pixelated metasurface absorber. In: IEEE MTT–S International Microwave and RF Conference; Mumbai, India; 2019 13–15 Dec. DOI:10.1109/IMaRC45935.2019.9118698/
  • Labun J, Kurdel P, Češkovič M, et al. Airborne weather surveillance radars for increasing air transport safety. Transp Res Proc. 2017;28:156–163.
  • Li S-J, Wu P-X, Xu H-X, et al. Ultra-wideband and polarization-insensitive perfect absorber using multilayer metamaterials, lumped resistors, and strong coupling effects. Nanoscale Res Lett. 2018;13:Article ID 386.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.