81
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Nearfield radio link of normal mode helical antenna for wireless capsule endoscopy

, , , , , & show all
Pages 2672-2696 | Received 15 Feb 2022, Accepted 18 Jul 2022, Published online: 27 Jul 2022

References

  • Du C, Jin G. A compact CPW-fed band-notched UWB-MIMO flexible antenna for WBAN application. J Electrom Waves Appl. 2021;35(8):1046–1058.
  • Molley A, Beaumont K, Krimi T, et al. Challenges to the development of the next generation of self-reporting cardiovascular implantable medical devices. IEEE Rev Biomed Eng. 2021;15:260–272.
  • Ashyap AY, Dahlan SH, Abidin ZZ, et al. Robust and efficient integrated antenna with EBG-DGS enabled wide bandwidth for wearable medical device applications. IEEE Access. 2020;8:56346–56358.
  • Hall PS, Hao Y, editors. Antennas and propagation for body centric wireless communications. Boston: Artech House; 2006.
  • Ahmad S, Md Mehedee H, Rashed Bin HM, et al. Design of a compact simple structured dual-band patch antenna for wireless on-body medical and sports devices. 2nd International conference on robotics, electrical and signal processing techniques (ICREST 2021), Dhaka, Bangladesh; Jan 2021; p. 577–581.
  • Sarmad NM, Asnor JI, Alyani I, et al. On-off body ultra-wideband (UWB) antenna for wireless body area networks (WBAN): a review. IEEE Access. 2020;8:150844–150863.
  • Kanagasabai M, Sambandam P, Mohammed GNA, et al. On the design of frequency reconfigurable tri-band miniaturized antenna for WBAN applications. Int J Electron Commun (AEU). 2020;127:1–7.
  • Miah MS, Khan AN, Icheln C, et al. Antenna systems design for improved wireless capsule endoscope links at 433 MHz. IEEE Trans Antennas Propag. 2019;67(4):2687–2699.
  • Zheng G, Shankaran R, Orgun MA, et al. Analysis of an ultra miniature capsule antenna for gastrointestinal endoscopy. Eng Sci Technol Int J. 2018;21:938–944.
  • Zainudin N, Abd Latef T, Aridas NK, et al. Increase of input resistance of a normal-mode helical antenna (NMHA) in human body application. Sensors. 2020;20(4):1–19.
  • Roi L, Nastya V, Idan M, et al. Gain enhancement of a compact implantable dipole for biomedical applications. IEEE Antennas Wireless Propag Lett. 2018;17(10):1778–1782.
  • Shahzeb H, Syed Ahson AH, Hyoungsuk Y. Miniaturized dual-band circularly polarized implantable antenna for capsule endoscopic system. IEEE Trans Antennas Propag. 2021;69(4):1885–1895.
  • Wenjie C, Ruipeng L, Lu W, et al. Design of wideband implantable antenna for wireless capsule endoscope system. IEEE Antennas Wireless Propag Lett. 2019;18(12):2706–2710.
  • Jianjun L, Ji W, Kejia Z, et al. Design of a dual-polarized omnidirectional dielectric resonator antenna for capsule endoscopy system. IEEE Access. 2021;9:14779–14786.
  • Mutiara K, Bambang SN, Miftadi S. IEEE Asia pacific conference on wireless and mobile (APWiMob). Design of microstrip antenna for wireless capsule endoscopy in wireless body area network, Bandung, Indonesia; 2017. p. 134–137.
  • Li Y, Guo YX, Xiao S. Orientation insensitive antenna with polarization diversity for wireless capsule endoscope system. IEEE Trans Antennas Propag. 2017;65(7):3738–3743.
  • Faerber J, Cummis G, Pavuluri SK, et al. In vivo characterization of a wireless telemetry module for a capsule endoscopy system utilizing a conformal antenna. IEEE Trans Biomed Circuits Syst. 2018;12(1):95–105.
  • Wang J, Leach M, Lim EG, et al. An implantable and conformal antenna for wireless capsule endoscopy. IEEE Antennas Wireless Propag Lett. 2018;17(7):1153–1157.
  • Lei W, Guo YX. Design of a dual-polarized wideband conformal loop antenna for capsule endoscopy systems. IEEE Trans Antennas Propag. 2018;66(11):5706–5715.
  • Atashpanjeh E, Rezaei P. Broadband conformal monopole antenna loaded with meandered arms for wireless capsule endoscopy. Wireless Personal Commun. 2020;110:1679–1691.
  • Shang J, Yu Y. An ultrawideband capsule antenna for biomedical applications. IEEE Antennas Wireless Propag Lett. 2019;18(12):2548–2551.
  • Biswas B, Kramakar A, Chandra V. Fractal inspired miniaturized wideband ingestible antenna for wireless capsule endoscopy. Int J Electron Commun. 2020;120:1–8.
  • Feng Y, Pan SP, Li JW, et al. Design of ultra-wideband conformal capsule antenna for wireless capsule endoscopy system. Cross strait radio science & wireless technology conference (CSRSWTC), Fuzhou, China; 2020.
  • Xu LJ, Ma ZY, Wu Z. Wideband conformal antenna integrated with lens for implantable capsule system. International applied computational electromagnetics society (ACES-China) symposium, Chengdu, China; 2021.
  • Wang Z, Lim EG, Tillo T, et al. Review of the wireless capsule transmitting and receiving antennas. In Eksim Ali, editor. Wireless communications and networks - recent advances (pp. 27–46). Xi'an Jiaotong, China: InTech; 2012; ISBN: 978- 953-51-0189-5.
  • Nikita KF. Antennas and RF communication. Handbook of biomedical telemetry. Athens, Greece: Wiley IEEE Press; 2014.
  • Nikolayev D, Zhadobov M, Karban P, et al. Long-range antenna systems for in-body biotelemetry-design methodology and characterization approach. European Medical and Biological Engineering Conference (EMBEC) Nordic-Baltic Conference on Biomedical Engineering and Medical Physics (NBC). Vol. 65. 2017. p. 233–236.
  • Kamarudin NA, Kamardin K, Yamada Y. Equation for estimation of radio link budget for NMHA in human fat tissue phantom. International Symposium on Antennas and Propagation ISAP, Osaka, Japan; 2020. p. 383–384.
  • Sarestoniemi M, Raez CP, Kissi C, et al. Propagation study of UWB capsule endoscope with multiple on-body antennas. 15th International symposium on medical information and communication technology (ISMICT), Xiamen, China; 2021. p. 215–220.
  • Shang J, Yu Y. Propagation-loss characterization for livestock implantable at (433, 868, 1400) MHz. IEEE Trans Antennas Propag. 2021;69(8):5166–5170.
  • Manoufali M, Bialkowski K, Mobashsher AT, et al. In situ near-field path loss and data communication link for brain implantable medical devices using software-defined radio. IEEE Trans Antennas Propag. 2020;68(9):6787–6799.
  • Leelatien P, Ito K, Saito K, et al. Channel characteristics and wireless telemetry performance of transplanted organ monitoring system using ultrawideband communication. IEEE J Electromagnetics RF Microwaves Med Biol. 2018;2(2):94–101.
  • FCC guidelines for evaluating the environmental effects of radio frequency radiation. Washington DC: FCC; 1996.
  • Medical implant communications service (MICS) federal register. Rules Regulations. 1999;64(240):69926–69934.
  • Dinh NQ, Dung DT, Yamada Y, et al. Input resistance changes and related performances of a normal-mode helical antenna in a human body application. Appl Comput Electromagn Soc (ACES) J. 2020;35(1):23–30.
  • Mohd Baharin RH, Uno T, Arima T, et al. Effects of the permittivity and conductivity of human body for normal-mode helical antenna performance. IEICE Electronic Express. 2019;16(16):1–6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.