307
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Low-RCS Ka-band receiving and transmitting satellite communication antennas co-designed with high-performance absorbent frequency-selective radomes

, , &
Pages 190-206 | Received 07 Apr 2022, Accepted 23 Aug 2022, Published online: 01 Sep 2022

References

  • Zhu X, Shao W, Li JL, et al. Design and optimization of low RCS patch antennas based on a genetic algorithm. Prog Electromagn Res. 2012;122(1):327–339.
  • Zhang JK, Xu JC, Qu Y, et al. A microstrip antenna with reduced in-band and out-of-band radar cross-section. Int J Microw Wirel Technol. 2019 Mar;11(2):199–205.
  • Pazokian M, Komjani N, Karimipour M. Broadband RCS reduction of microstrip antenna using coding frequency selective surface. IEEE Antennas Wireless Propag Lett. 2018 Jun;17(8):1382–1385.
  • Han ZJ, Song W, Sheng XQ. Gain enhancement and RCS reduction for patch antenna by using polarization-dependent EBG surface. IEEE Antennas Wireless Propag Lett. 2017 Jan;16:1631–1634.
  • Pan WB, Huang C, Chen P, et al. A low-RCS and high-gain partially reflecting surface antenna. IEEE Trans Antennas Propag. 2014 Feb;62(2):945–949.
  • Li B, Liu XB, Shi HY, et al. Planar phase gradient metasurface antenna with low RCS. IEEE Access. 2018 Dec;6:78839–78845.
  • Paquay M, Iriarte JC, Ederra I, et al. Thin AMC structure for radar cross-section reduction. IEEE Trans Antennas Propag. 2007;55(12):3630–3638.
  • Modi AY, Balanis CA, Birtcher CR, et al. Novel design of ultrabroadband radar cross section reduction surfaces using artificial magnetic conductors. IEEE Trans Antennas Propag. 2017 Jul;65(10):5406–5417.
  • Deng Z, Wang F, Ren Y, et al. A novel wideband low-RCS reflector by hexagon polarization rotation surfaces. IEEE Access. 2019;7:131527–131533.
  • Li YQ, Zhang H, Fu YQ, et al. RCS reduction of ridged waveguide slot antenna array using EBG radar absorbing material. IEEE Antennas Wireless Propag Lett. 2008 Jun;7:473–476.
  • Mei P, Lin XQ, Yu JW, et al. A band-notched absorber designed with high notch-band-edge selectivity. IEEE Trans Antennas Propag. 2017 Jul;65(7):3560–3567.
  • Zhou YL, Cao XY, Gao J, et al. Broadband aperture-coupling patch antenna with improved radiation and scattering performance based on metamaterial absorber. IET Microw Antennas Propag. 2019 Jun;13(7):875–880.
  • Chen X, Li YQ, Fu YQ, et al. Design and analysis of lumped resistor loaded metamaterial absorber with transmission band. Opt Exp. 2012 Dec;20(27):28347–28352.
  • Liu LG, Li YQ, Meng QZ, et al. Design of an invisible radome by frequency selective surfaces loaded with lumped resistors. Chin Phys Lett. 2013;30(6):064101-1–064101-4.
  • Chen Q, Liu LG, Chen L, et al. Absorptive frequency selective surface using parallel LC resonance. Electron Lett. 2016 Mar;52(6):418–419.
  • Costa F, Monorchio A. A frequency selective radome with wideband absorbing properties. IEEE Trans Antennas Propag. 2012 Apr;60(6):2740–2747.
  • Yuan XJ, Yuan XF. A transmissive/absorbing radome with double absorbing band. Microwave Opt Technol Lett. 2016 Aug;58(8):2016–2019.
  • Chen Q, Yang SL, Bai JJ, et al. Design of absorptive/transmissive frequency-selective surface based on parallel resonance. IEEE Trans Antennas Propag. 2017 Jul;65(9):4897–4902.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.