113
Views
0
CrossRef citations to date
0
Altmetric
Articles

Modeling and measurement of human body blockage loss at 28 GHz

, , & ORCID Icon
Pages 538-548 | Received 06 Jan 2022, Accepted 08 Nov 2022, Published online: 30 Nov 2022

References

  • Rappaport TS, Xing Y, MacCartney GR, et al. Overview of millimeter wave communications for fifth-generation (5G) wireless networks – with a focus on propagation models. IEEE Trans Antennas Propag. 2017;65(12):6213–6230.
  • Rappaport TS, Sun S, Mayzus R, et al. Millimeter wave mobile communications for 5G cellular: it will work!. IEEE Access. 2013;1:335–349.
  • Rappaport TS, MacCartney GR, Sun S, et al. Small-scale, local area, and transitional millimeter wave propagation for 5G communications. IEEE Trans Antennas Propag. 2017;65(12):6474–6490.
  • Benzaghta M, Rabie KM. Massive MIMO systems for 5G: a systematic mapping study on antenna design challenges and channel estimation open issues. IET Commun. 2021;15(13):1677–1690.
  • Ko JS, Lee U, Kim YS, et al. Measurements and analyses of 28 GHz indoor channel propagation based on a synchronized channel sounder using directional antennas. J Electromagn Waves Appl. 2016;30(15):2039–2054.
  • Maccartney GR, Rappaport TS, Sun S, et al. Indoor office wideband millimeter-wave propagation measurements and channel models at 28 and 73 GHz for ultra-dense 5G wireless networks. IEEE Access. 2015;3:2388–2424.
  • Kara A. Human body shadowing variability in short-range indoor radio links at 3–11 GHz band. Int J Electr. 2009;96(2):205–211.
  • Gapeyenko M, Samuylov A, Gerasimenko M, et al. On the temporal effects of mobile blockers in urban millimeter-wave cellular scenarios. IEEE Trans Veh Technol. 2017;66(11):10124–10138.
  • Kara A, Bertoni HL. Effect of people moving near short-range indoor propagation links at 2.45 GHz. J Commun Netw. 2006;8(3):286–289.
  • Zhao X, Wang Q, Li S, et al. Attenuation by human bodies at 26- and 39.5-GHz millimeter wavebands. IEEE Antennas Wireless Propag Lett. 2017;16:1229–1232.
  • Rumney M, Kyosti P, Hentila L. 3GPP channel model developments for 5G NR requirements and testing. Proceedings of the 12th European Conference on Antennas and Propagation; 2018 Apr 9-13; London (UK): IET; 2018.
  • Virk UT, Haneda K. Modeling human blockage at 5G millimeter-wave frequencies. IEEE Trans Antennas Propag. 2019;68(3):2256–2266.
  • Qi W, Huang J, Sun J, et al. Measurements and modeling of human blockage effects for multiple millimeter wave bands. Proceedings of the 13th International Wireless Communications and Mobile Computing Conference; 2017 Jun 26-30; Valencia (Spain): IEEE; 2017.
  • Ahmed BT. Human body shadowing at 28 GHz. Wireless Personal Commun. 2020;110(2):621–635.
  • Liu P, Syrytsin I, Nielsen JO, et al. Characterization and modeling of the user blockage for 5G handset antennas. IEEE Trans Instr Meas. 2020;70:1–11.
  • Syrytsin I, Zhang S, Pedersen GF, et al. Statistical investigation of the user effects on mobile terminal antennas for 5G applications. IEEE Trans Antennas Propag. 2017;65(12):6596–6605.
  • Raghavan V, Akhoondzadeh-Asl L, Podshivalov V, et al. Statistical blockage modeling and robustness of beamforming in millimeter-wave systems. IEEE Trans Microw Theory Tech. 2019;67(7):3010–3024.
  • Raghavan V, Chi M, Tassoudji MA, et al. Antenna placement and performance tradeoffs with hand blockage in millimeter wave systems. IEEE Trans Commun. 2019;67(4):3082–3096.
  • Raghavan V, Noimanivone S, Rho SK, et al. Hand and body blockage measurements with form-factor user equipment at 28 GHz. IEEE Trans Antennas Propag. 2021;70(1):607–620.
  • Syrytsin I, Zhang S, Pedersen GF, et al. User-shadowing suppression for 5G mm-wave mobile terminal antennas. IEEE Trans Antennas Propag. 2019;67(6):4162–4172.
  • Dalveren Y, Karatas G, Derawi M, et al. A simple propagation model to characterize the effects of multiple human bodies blocking indoor short-range links at 28 GHz. Electronics. 2021;10(3):305.
  • Dalveren Y, Alabish AH, Kara A. A simplified model for characterizing the effects of scattering objects and human body blocking indoor links at 28 GHz. IEEE Access. 2019;7:69687–69691.
  • Benzaghta M, Coruk RB, Yalcinkaya B, et al. An experimental study on the influence of human movement in indoor radio channel at 28 GHz. Proceedings of the International Black Sea Conference on Communications and Networking; 2021 May 24-28; Bucharest (Romania): IEEE; 2021.
  • Federal Communications Commission. Use of spectrum bands above 24 GHz for mobile radio services. 2015 Oct; Suppl.p. 14–177.
  • Jacob M, Priebe S, Dickhoff R, et al. Diffraction in mm and sub-mm wave indoor propagation channels. IEEE Trans Microw Theory Tech. 2012;60(3):833–844.
  • Lu JS, Steinbach D, Cabrol P, et al. Modeling human blockers in millimeter wave radio links. ZTE Commun. 2012;10(4):23–28.
  • Zhang F, Niu K, Xiong J, et al. Towards a diffraction-based sensing approach on human activity recognition. Proc ACM Inter Mobile Wearable Ubiquitous Technol. 2019;3(1):1–25.
  • Hristov HD. Fresnal zones in wireless links, zone plate lenses and antennas. Boston: Artech House, Inc; 2000.
  • Li H, Ota K, Dong M, et al. Learning human activities through Wi-Fi channel state information with multiple access points. IEEE Commun Mag. 2018;56(5):124–129.
  • Ravichandran R, Saba E, Chen KY, et al. WiBreathe: Estimating respiration rate using wireless signals in natural settings in the home. Proceedings of the International Conference on Pervasive Computing and Communications; 2015 Mar 23–27; St. Louis (MO): IEEE; 2015.
  • Rappaport TS. Wireless communications: principles and practice. New Jersey: Prentice Hall PTR; 1996.
  • Chen X, Tian L, Tang P, et al. Modelling of human body shadowing based on 28 GHz indoor measurement results. Proceedings of the 84th vehicular technology conference; 2016 Sep 18–21; Montreal (Canada): IEEE; 2017.
  • Bertoni HL. Radio propagation for modern wireless systems. London: Pearson Education; 1999.
  • MacCartney GR, Deng S, Sun S, et al. Millimeter-wave human blockage at 73 GHz with a simple double knife-edge diffraction model and extension for directional antennas. Proceedings of the International Conference on Pervasive Computing and Communications; 2015 Mar 23–27; St. Louis (MO): IEEE; 2015.
  • James GL. Geometrical theory of diffraction for electromagnetic waves. Hertfordshire: IET; 1986.
  • Ghaddar M, Talbi L, Denidni TA, et al. A conducting cylinder for modeling human body presence in indoor propagation channel. IEEE Trans Antennas Propag. 2007;55(11):3099–3103.
  • Ghaddar M, Talbi L, Denidni T. Human body modelling for prediction of effect of people on indoor propagation channel. Electr Lett. 2004;40(25):1592–1594.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.