158
Views
0
CrossRef citations to date
0
Altmetric
ARTICLES

Super-thin Frequency Selective Surfaces and waveguide filters based on Babinet-dual screens

Pages 644-660 | Received 08 Jun 2022, Accepted 27 Dec 2022, Published online: 04 Jan 2023

References

  • Matthaei G, Young L, Jones EMT. Microwave filters, impedance matching networks and coupling structures. Norwood (MA): Artech House; 1980; chapters 3, 4, 6–9.
  • Cohn S, Levy R. History of microwave filter research, design and development . IEEE Trans Microw Theory Tech. 1984;32:1055–1067. doi:10.1109/TMTT.1984.1132817.
  • Kyriazidou CA, Contopanagos HF, Alexopoulos NG. Monolithic waveguide filters using printed photonic-bandgap materials. IEEE Trans Microw Theory Tech. 2001;49:297–307. doi:10.1109/22.903089.
  • Lalehparvar L, Goussetis G, Budimir D. Novel periodically loaded multilayer resonators. Microw Optical Technol Lett. 2002;35:374–375.
  • Kim M, Sung J, Higgins A, et al. A waveguide shutter using electromagnetic crystals. Microw Optical Technol Lett. 2002;34:186–187.
  • Xin H, Higgings A, Kim M, et al. Electromagnetic crystal (EMXT) waveguide band-stop filter. IEEE Microw Wireless Components Lett. 2003;13:108–110. doi:10.1109/LMWC.2003.810121.
  • Silveirinha MGMV, Fernandes CA. Design of waveguide filters using a PBG disk-type material. IEEE Antennas Propag Soc Int Symposium Digest. 2003;4:875–878.
  • Solano MA, Gomez A, Lakhtakia A, et al. Rigorous analysis of guided wave propagation of dielectric electromagnetic band-gaps in a rectangular waveguide. Int J Electron. 2005;92:117–130. doi:10.1080/00207210512331337677.
  • Luo GQ, Hong W, Tang HJ, et al. High performance frequency selective surface using cascading substrate integrated waveguide cavities. IEEE Microw Wirel Compon Lett. 2006;16:648–650. doi:10.1109/LMWC.2006.885588.
  • Luo GQ, Hong W, Lai HQ, et al. Design and experimental verification of compact frequency-selective surface with quasi-elliptic bandpass response. IEEE Trans Microw Theory Tech. 2007;55:2481–2487. doi:10.1109/TMTT.2007.910085.
  • Tuz V, Prosvirnin SL, Kazanskiy V. Mutual conversion of Tm_mn and Te_mn waves by periodic and aperiodic waveguide filters composed of dense metal-strip gratings. Progr Electromag Res B. 2011;30:313–335. doi:10.2528/PIERB11041802.
  • Usanov DA, Nikitov SA, Skripal AV, et al. Waveguide photonic crystals on resonant irises with characteristics controlled by n–i–p–i–n-diodes. J Commun Technol Electron. 2018;63:58–63. doi:10.1134/S1064226918010138.
  • Tang M, Chen ZC, Huang ZQ, et al. Maskless multiple-beam laser lithography for large-area nanostructure/microstructure fabrication. Appl Opt. 2011;50:6536–6542. doi:10.1364/AO.50.006536.
  • Usanov DA, Skripal AV, Abramov A, et al. Measurement of the metal nanometer layer parameters on dielectric substrates using photonic crystals based on the waveguide structures with controlled irregularity in the microwave band. Eur Microw Conf. 2007:198–201.
  • Usanov DA, Nikitov SA, Skripal AV, et al. One-dimensional microwave photonic crystals: New applications. 1st ed. Boca Raton (FL): CRC Press; 2019.
  • Skripal AV, Ponomarev DV, Komarov AA. Tamm resonances in the structure 1-D microwave photonic crystal/conducting nanometer layer. IEEE Trans Microwave Theory Tech. 2020;68:5115–5122. doi:10.1109/TMTT.2020.3021412.
  • Contopanagos HF. Induced resonant electromagnetic transmission in almost-shorted dual screens. J Opt Soc Am B. 2013;30:874–883. doi:10.1364/JOSAB.30.000874.
  • Booker HG. Slot aerials and their relation to complementary wire antennas. J IEE. 1946;93:620–626.
  • Born M, Wolf E. Principles of optics. 7th ed Cambridge: Cambridge University Press; 1999.
  • Kyriazidou CA, Contopanagos HF, Merrill WM, et al. Artificial versus natural crystals: Effective wave impedance of printed Photonic Band Gap materials. IEEE Trans Antennas Prop. 2000;48:95–106. doi:10.1109/8.827390.
  • Collin RE. Field theory of guided waves. 2nd ed Piscataway: IEEE Press & Oxford University Press; 1991.
  • Eggimann WH. Higher order evaluation of dipole moments of a small circular disk. IRE Trans Microw Theory Tech. 1960;8:573.
  • Collin RE, Eggimann WH. Dynamic interaction fields in a two-dimensional lattice. IRE Trans Microw Theory Tech. 1961;9:110–115. doi:10.1109/TMTT.1961.1125365.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.