113
Views
0
CrossRef citations to date
0
Altmetric
ARTICLES

Time domain characteristics of lossy multiconductor transmission lines randomly excited by electromagnetic pulse

&
Pages 672-692 | Received 18 Oct 2022, Accepted 20 Feb 2023, Published online: 15 Mar 2023

References

  • Gong YF, Chen XT, Li YJ. Research and application of finite-element time-domain method for transient response of buried cable excited by an electromagnetic wave. J Electromagn Waves Appl. 2020;34(16):609–623.
  • Guo J, Xie Y, Rachidi F, et al. On nonuniform transient electromagnetic field coupling to overhead transmission lines. IEEE Trans Antennas and Propag. 2018;66(6):3087–3096.
  • Gong YF, Chen XT. An efficient time-domain method for the electromagnetic transient response of multiconductor transmission lines excited by an electromagnetic field. J Electromagn Waves and Appl. 2021;35(7):937–957.
  • Bishop J E, Strack O E. A statistical method for verifying mesh convergence in Monte Carlo simulations with application to fragmentation. Int J Numer Methods Eng. 2011;88(3):279–306.
  • Rufuie M R, Gad E, Nakhla M, et al. Generalized Hermite polynomial chaos for variability analysis of macromodels embeddedin nonlinear circuits. IEEE Trans Compon Packag Manuf Technol. 2014;4(4):673–684.
  • Manfredi P, Trinchero R, Ginste D V. A perturbative stochastic Galerkin method for the uncertainty quantification of linear circuits. IEEE Trans Circuits and Sys I, Reg Papers. 2020;67(9):2993–3006.
  • Spina D, Dhaene T, Knockaert L, et al. Polynomial chaos-based macromodeling of general linear multiport systems for time-domain analysis. IEEE Trans Microw Theory Tech. 2017;65(5):1422–1433.
  • Manfredi P, Ginste D V, Zutter D D, et al. On the passivity of polynomial chaos-based augmented models for stochastic circuits. IEEE Trans Circuits and Sys I, Reg Papers. 2013;60(11):2998–3007.
  • Manfredi P, Ginste DV, Stievano IS, et al. Stochastic transmission line analysis via polynomial chaos methods: an overview. IEEE Electromag Compat Mag. 2017;6(3):77–84.
  • Manfredi P, Canavero FG. Numerical calculation of polynomial chaos coefficients for stochastic per-unit-length parameters of circular conductors. IEEE Trans Mag. 2014;50(3):74–82.
  • Rong A, Cangellaris AC. Interconnect transient simulation in the presence of layout and routing uncertainty. IEEE 20th conf elect perform of electron package syst; 2011; San Jose, USA: 157–160.
  • Biondi A, Ginste DV, De ZD, et al. Variability analysis of interconnects terminated by general nonlinear loads. IEEE Trans Compon Packag Manuf Technol. 2013;3(7):1244–1251.
  • Stievano S, Manfredi P, Canavero FG. Stochastic analysis of multiconductor cables and interconnects. IEEE Trans Electromag Compat. 2011;53(2):501–507.
  • Veropoulos GP, Papakanellos PJ, Vlachos C. A probabilistic approach for the susceptibility assessment of a straight PCB trace excited by random plane-wave fields. IEEE Trans Electromag Compat. 2018;60(1):258–265.
  • Bellan D, Pignari S. A probabilistic model for the response of an electrically short two-conductor transmission line driven by a random plane wave field. IEEE Trans Electromag Compat. 2001;43(2):130–139.
  • Manfredi P, Canavero FG. Polynomial chaos representation of transmission-line response to random plane waves. International symposium on electromagnetic compatibility - EMC EUROPE; 2012; Rome, Italy: 1–6.
  • Manfredi P, Canavero FG. Polynomial chaos for random field coupling to transmission lines. IEEE Trans Electromag Compat. 2012;54(3):677–680.
  • Gassab O, Bouguerra S, Zhou L, et al. Stochastic analysis of multitwisted cables with random parameters excited by random plane-wave fields. IEEE Trans Electromag Compat. 2020;62(5):2084–2095.
  • Yang C, Zhu F, Lu N, et al. Analysis on uncertainty of field-to-wire coupling model in time domain. IEEE Trans Power Del. 2022;37(5):3771–3781.
  • Paul C R. Analysis of multiconductor transmission lines. New York: Wiley; 1994.
  • Kong Y, Zhang C, Chu Q. An optimized one-step leapfrog HIE-FDTD method with the artificial anisotropy parameters. IEEE Trans. Antennas Propag. 2020;68(2):1198–1203.
  • Guo L, Li M, Xu S, et al. Electromagnetic modeling using an FDTD-equivalent recurrent convolution neural network: accurate computing on a deep learning framework. IEEE Antennas Propag. Mag. 2021;early access:2–11.
  • Zhang H, Yao H, Jiang L, et al. Deep long short-term memory networks-based solving method for the FDTD method: 2-D case. IEEE Microw Wireless Techn Lett. 2023;early access:1–4.
  • Qi C, Chen J, Egarguin N, et al. Feasibility analysis for active manipulation of electromagnetic fields in free space. IEEE Int. Symp. on antennas and propag. and USNC-URSI radio science meeting; 2021; Singapore, Singapore; 1841–1842.
  • Sobol’ IM. On sensitivity estimation for nonlinear mathematical models. Matematicheskoe Modelirovanie. 1990;2(1):112–118.
  • Sobol’ IM. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simulation. 2001;55(1-3):271–280.
  • Homma T, Saltelli A. Importance measures in global sensitivity analysis of nonlinear models. Reliab Eng Syst Safety. 1996;52(1):1–17.
  • Sudret B. Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Safety. 2008;93(7):964–979.
  • Bdour T, Reineix A. Global sensitivity analysis and uncertainty quantification of radiated susceptibility in PCB using nonintrusive polynomial chaos expansions. IEEE Trans Electromag Compat. 2016;58(3):939–942.
  • Afrooz K, Abdipour A. Efficient method for time-domain analysis of lossy nonuniform multiconductor transmission line driven by a modulated signal using FDTD technique. IEEE Trans Electromag Compat. 2012;54(2):482–494.
  • Xiu D, Karniadakis GE. Modeling uncertainty in flow simulations via generalized polynomial chaos. J Comput Phys. 2003;187(1):137–167.
  • Mckay MD, Beckman RJ, Conover WJ. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics. 1979;21(2):239–245.
  • International Electro technical Commission Standardization (IEC). Electromagnetic compatibility (EMC) – Part 2: Environment – Section 9: Description of HEMP environment – Radiated disturbance. IEC; 1996. Standard No. IEC 61000-2-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.