54
Views
0
CrossRef citations to date
0
Altmetric
ARTICLES

An efficient derivation of spatial Green's function of open-radiating rectangular cavity using CGF-CI technique

Pages 909-922 | Received 06 Oct 2022, Accepted 26 Apr 2023, Published online: 26 May 2023

References

  • Borji A. Fast electromagnetic analysis and design of multiple coupled cavity structures; 2003. PhD dissertation, University of Waterloo (Canada), 2003.
  • Alessandri F, Chiodetti M, Giugliarelli A, et al. The electric-field integral-equation method for the analysis and design of a class of rectangular cavity filters loaded by dielectric and metallic cylindrical pucks. IEEE Trans Microw Theory Tech. 2004;52(8):1790–1797.
  • Kraszewski A, Nelson S, You TS. Use of a microwave cavity for sensing dielectric properties of arbitrarily shaped biological objects. IEEE Trans Microw Theory Tech. 1990;38(7):858–863.
  • Gronwald F. Calculation of mutual antenna coupling within rectangular enclosures. IEEE Trans Electromagn Compat. 2005;47(4):1021–1025.
  • Primiani V, Moglie F. Numerical simulation of reverberation chamber parameters affecting the received power statistics. IEEE Trans Electromagn Compat. 2012;54(3):522–532.
  • Iskander M, Smith R, Andrade A, et al. FDTD simulation of microwave sintering of ceramics in multimode cavities. IEEE Trans Microw Theory Tech. 1994;42(5):793–800.
  • Marliani F, Ciccolella A. Computationally efficient expressions of the dyadic Green's function for rectangular enclosures. J Electromagn Waves Appl. 2000;14(12):1635–1636.
  • Park MJ, Nam S. Rapid summation of the Green's function for the rectangular waveguide. IEEE Trans Microw Theory Tech. 1998;46(12):2164–2166.
  • Araneo R, Lovat G. An efficient MoM formulation for the evaluation of the shielding effectiveness of rectangular enclosures with thin and thick apertures. IEEE Trans Electromagn Compat. 2008;50(2):294–304.
  • Kim HS. Electromagnetic waves in cavities: deterministic and statistical theories. Vol. 35. John Wiley & Sons; 2009.
  • Collin R. Field theory of guided waves. IEEE Press; 1991.
  • Wu D, Chang D. A hybrid representation of the Green's function in an overmoded rectangular cavity. IEEE Trans Microw Theory Tech. 1988;36(9):1334–1342.
  • Park MJ, Park J, Nam S. Efficient calculation of the Green's function for the rectangular cavity. IEEE Microw Guide Wave Lett. 1998;8(3):124–126.
  • Soler FJP, Pereira FDQ, Rebenaque DC, et al. A novel efficient technique for the calculation of the Green's functions in rectangular waveguides based on accelerated series decomposition. IEEE Trans Antennas Propag. 2008;56(10):3260–3270.
  • Campione CFS. Ewald method for 3d periodic dyadic Green's functions and complex modes in composite materials made of spherical particles under the dual dipole approximation. Radio Sci. 2012;47(4):1–11.
  • Gruber M, Eibert T. A hybrid Ewald-spectral cavity Green's function boundary element method with spectral domain acceleration for modeling of over-moded cavities. IEEE Trans Antennas Propag. 2015;63(6):2627–2635.
  • Borji A, Safavi-Naeini S. Rapid calculation of the Green's function in a rectangular enclosure with application to conductor loaded cavity resonators. IEEE Trans Microw Theory Tech. 2004;52(7):1724–1731.
  • Sanamzadeh M, Tsang L. Fast and broadband calculation of the dyadic Green's function in the rectangular cavity: an imaginary wave number extraction technique. Prog Electromagn Res C. 2019;96:243–258.
  • Arcioni P, Bozzi M, Bressan M, et al. The BI-RME method: an historical overview. In: 2014 international conference on numerical electromagnetic modeling and optimization for RF, microwave, and terahertz applications (NEMO); 2014; Pavia, Italy. p. 1–4.
  • Bozzi M, Perregrini L, Wu K. Modeling of conductor, dielectric, and radiation losses in substrate integrated waveguide by the boundary integral-resonant mode expansion method. IEEE Trans Microw Theory Tech. 2008;56(12):3153–3161.
  • Conciauro G. Advanced modal analysis: CAD techniques for waveguide components and filters. John Wiley & Sons; 1999.
  • Tsang L, Huang S. Broadband Green's function with low wavenumber extraction for arbitrary shaped waveguide and applications to modeling of vias in finite power/ground plane. Prog Electromagn Res. 2015;152:105–125.
  • Tsang L, Ding KH, Liao TH, et al. Modeling of scattering in arbitrary-shape waveguide using broadband Green's function with higher order low wavenumber extractions. IEEE Trans Electromagn Compat. 2018;60(1):16–25.
  • Chew Weng C, Michielssen E, Song JM, et al. Fast and efficient algorithms in computational electromagnetics. Artech House; 2001.
  • Yang K, Yilmaz AE. Comparison of pre-corrected FFT/AIM and FFT-truncated multilevel interpolation methods for multi-scale analysis. In: Proceedings of the 28th Annual Review of Progress in Applied Computational Electromagnetics; 2012. p. 181–186.Columbus, Ohio.
  • Yang K, Yilmaz AE. A three-dimensional adaptive integral method for scattering from structures embedded in layered media. IEEE Trans Geosci Remote Sens. 2012;50(4):1130–1139.
  • Yang K, Ylmaz AE. FFT-accelerated analysis of scattering from complex dielectrics embedded in uniaxial layered media. IEEE Geosci Remote Sens Lett. 2013;10(4):662–666.
  • Catedra M, Cuevas J, Nuno L. A scheme to analyze conducting plates of resonant size using the conjugate-gradient method and the fast Fourier transform. IEEE Trans Antennas Propag. 1988;36(12):1744–1752.
  • Bleszynski E, Bleszynski M, Jaroszewicz T. AIM: adaptive integral method for solving large-scale electromagnetic scattering and radiation problems. Radio Sci. 1996;31(5):1225–1251.
  • Yang K, Ylmaz AE. An FFT-accelerated integral-equation solver for analyzing scattering in rectangular cavities. IEEE Trans Microw Theory Tech. 2014;62(9):1930–1942.
  • Faraji-Dana R. An efficient and accurate Green's function analysis of packaged microwave integrated circuits [Ph.D. thesis]. University of Waterloo; 1993.
  • Shishegar AA, Faraji-Dana R. A closed-form spatial Green's function for finite dielectric structures. Electromagnetics. 2003;23(7):579–594.
  • Torabi A, Shishegar AA, Faraji-Dana R. An efficient closed-form derivation of spatial Green's function for finite dielectric structures using characteristic Green's function-rational function fitting method. IEEE Trans Antennas Propag. 2014;62(3):1282–1292.
  • Torabi A, Shishegar AA, Faraji-Dana R. Analysis of modal reflectivity of optical waveguide end-facets by the characteristic Green's function technique. J Lightw Technol. 2014;32(6):1168–1176.
  • Hua Y, Sarkar T. Generalized pencil-of-function method for extracting poles of an EM system from its transient response. IEEE Trans Antennas Propag. 1989;37(2):229–234.
  • Yevick D, Bardyszewski W, Hermansson B, et al. Split-operator electric field reflection techniques. IEEE Photon Technol Lett. 1991;3(6):527–529.
  • Torabi A, Shishegar A. Combination of characteristic Green's function technique and rational function fitting method for computation of modal reflectivity at the optical waveguide end-facet. In: 3th international conference on photonics, optics and laser technology (PHOTOPTICS 2015); March 2015; Berlin, Germany.
  • Gelin P, Petenzi M, Citerne J. Rigorous analysis of the scattering of surface waves in an abruptly ended slab dielectric waveguide. IEEE Trans Microw Theory Tech. 1981;29(2):107–114.
  • Dunleavy L, Katehi P. A generalized method for analyzing shielded thin microstrip discontinuities. IEEE Trans Microw Theory Tech. 1988;36(12):1758–1766.
  • Parsa A, Paknys R. Interior Green's function solution for a thick and finite dielectric slab. IEEE Trans Antennas Propag. 2007;55(12):3504–3514.
  • Ozgur Ergul LG. The multilevel fast multipole algorithm (MLFMA) for solving large-scale computational electromagnetics problems. IEEE Press Series on Electromagnetic Wave Theory. Wiley-IEEE Press; 2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.