61
Views
0
CrossRef citations to date
0
Altmetric
ARTICLES

Optimization and modulation of a multiband multimode metamaterial absorber and its application in healthy hotel indoor gas sensing

, , &
Pages 1122-1138 | Received 13 Jan 2023, Accepted 13 Jun 2023, Published online: 04 Jul 2023

References

  • Galinski H, Wyss A, Seregni M, et al. Disordered zero-index metamaterials based on metal-induced crystallization. NPG Asia Materials. 2019;11:58. doi:10.1038/s41427-019-0157-3
  • Zhang YC, Gao J, Yang XD. Spatial variation of vector vortex beams with plasmonic metasurfaces. Scientific Reports. 2019;9:9969. doi:10.1038/s41598-019-46433-z
  • Zheng QQ, Li YF, Zhang JQ, et al. Wideband, wide-angle coding phase gradient metasurfaces based on pancharatnam-berry phase. Scientific Reports. 2017;7:43543–43555. doi:10.1038/srep43543
  • Kwon H, Arbabi E, Kamali SM, et al. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nature Photonics. 2020;14:109–114. doi:10.1038/s41566-019-0536-x
  • Vallecchi A, Langley RJ, Schuchinsky AG. High-impedance metasurfaces with interwoven conductor patterns. In Proceedings of the 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics. IEEE, 2014;280–282.
  • Jiang XX, Leong ESP, Liu YJ, et al. Tuning plasmon resonance in depth-variant plasmonic nanostructures. Mater Des. 2016;96:64–67. doi:10.1016/j.matdes.2016.02.005
  • Byrnes SJ, Lenef A, Aieta F, et al. Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light. Opt Express. 2016;24:5110–5124. doi:10.1364/OE.24.005110
  • Qin F, Ding L, Zhang L, et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light. Sci Adv. 2016;2:e1501168–e1501175. doi:10.1126/sciadv.1501168
  • Mehmood MQ, Mei ST, Hussain S, et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices. Adv Mater. 2016;28:2533–2539. doi:10.1002/adma.201504532
  • Khorasaninejad M, Shi Z, Zhu AY, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 2017;17:1819–1824. doi:10.1021/acs.nanolett.6b05137
  • Manjappa M, Pitchappa P, Singh N, et al. Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies. Nature Comunications. 2018;9:4056–4065. doi:10.1038/s41467-018-06360-5
  • Pérez-Díaz S, Cortés-López S, Pérez-Rodríguez F. Light diffraction by a nanograting with bimetallic metamaterial. Optical Materials. 2021;118:111231. doi:10.1016/j.optmat.2021.111231
  • Xu HX, Sun SL, Tang SW, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 2012;12:4932–4936. doi:10.1021/nl302516v
  • Zou L, Withayachumnankul W, Shah MC, et al. Dielectric resonator nanoantennas at visible frequencies. Opt. Express. 2013;21:1344–1352. doi:10.1364/OE.21.001344
  • Lunnemann P, Femius Koenderink A. The local density of optical states of a metasurface. Scientific Reports. 2016;6:20655. doi:10.1038/srep20655
  • Cai T, Li H P, Zhou L. Dynamical control on helicity of electromagnetic waves by tunable metasurfaces. Scientific Reports. 2016;6:27503. doi:10.1038/srep27503
  • Han C, Tam W Y. Broadband optical magnetism in chiral metallic nanohole arrays by shadowing vapor deposition. Appl. Phys. Lett. 2016;106:081102. doi:10.1063/1.4913360
  • Zhu WM, Liu AQ, Bourouina T, et al. Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy. Nat. Commun. 2012;3:1274–1279. doi:10.1038/ncomms2285
  • Miao ZQ, Wu Q, Li X, et al. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces. Phys. Rev. X. 2014;5:041027–041039.
  • Lv TT, Zhu Z, Shi JH, et al. Optically controlled background-free terahertz switching in chiral metamaterial. Opt. Lett. 2014;39:3066–3069. doi:10.1364/OL.39.003066
  • Buchnev O, Podoliak N, Kaczmarek M, et al. Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch. Adv. Optical Mater. 2015;3:674–679. doi:10.1002/adom.201400494
  • Yin X H, Schäferling M, Michel Ann-Katrin U, et al. Active chiral plasmonics. Nano Lett. 2015;15:4255–4260. doi:10.1021/nl5042325
  • Meng C, Zhang XN, Suet To Tang, et al. Acoustic coherent perfect absorbers as sensitive null detectors, Scientific Reports, 2017;7:43574. doi:10.1038/srep43574
  • Baqir MA, Choudhury PK. Hyperbolic metamaterial-based UV absorber. IEEE Photonics Technology Letters. 2017;29:1548. doi:10.1109/LPT.2017.2735453
  • Meng YF, Zhu CH, Li Y, et al. Three-dimensional Dirac semimetal thin-film absorber for broadband pulse generation in the near-infrared. Optics Letters. 2018;43:1503. doi:10.1364/OL.43.001503
  • Liu GD, Zhai X, Meng HY, et al. Dirac semimetals based tunable narrowband absorber at terahertz frequencies. OPTICS EXPRESS. 2018;26:11471. doi:10.1364/OE.26.011471
  • Otsuji T, Popov V, Ryzhii V. Active graphene plasmonics for terahertz device applications. J. Phys. D: Appl. Phys. 2014;47:094006–094015. doi:10.1088/0022-3727/47/9/094006
  • Thongrattanasiri S, Koppens Frank HL, Javier Garcı´a de Abajo F. Complete optical absorption in periodically patterned graphene. . PRL. 2012;108:047401. doi:10.1103/PhysRevLett.108.047401
  • Huang ML, Cheng YZ, Cheng ZZ, et al. Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle. Optics Communications. 2018;415:194–201. doi:10.1016/j.optcom.2018.01.051
  • Singh R, Al-Naib I, Chowdhury DR, et al. Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces. Appied Physucs Letters. 2014;105:081108. doi:10.1063/1.4893726
  • Cao W, Singh R, Zhang CH, et al. Plasmon-induced transparency in metamaterials: active near field coupling between bright superconducting and dark metallic mode resonators. Applied Physics Letters. 2013;103:101106. doi:10.1063/1.4819389
  • Jin XR, Park J, Zheng HY, et al. Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling. Optics Express. 2011;19:21652. doi:10.1364/OE.19.021652
  • Jiang JX, Zhang QF, Ma QX, et al. Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials. Optical Materials Express. 2015;5:1962. doi:10.1364/OME.5.001962
  • Manjappa M, Turaga SP, Srivastava VAYK, et al. Magnetic annihilation of the dark mode in a strongly coupled bright–dark terahertz metamaterial. Optics Letters. 2017;2106:42.
  • He JN, Wang JQ, Ding P, et al. Optical switching based on polarization tunable plasmon-induced transparency in disk/Rod hybrid metasurfaces. Plasmonics. 2015;10:1115. doi:10.1007/s11468-015-9911-8
  • Hua YL, Li ZY. Analytic modal solution to transmission and collimation of light by one-dimensional nanostructured subwavelength metallic slits. J. Appl. Phys. 2009;105:013104–013111. doi:10.1063/1.3043885
  • Zhang S, Fan WJ, Paniou NC, et al. Optical negative-index bulk metamaterials consisting of 2D perforated metaldielectric stacks. Phys. Rev. Lett. 2005;95:137404. doi:10.1103/PhysRevLett.95.137404
  • Kuzel P, Kadlec F. Tunable structures and modulators for THz light. C. R. Physique. 2008;9:197–214. doi:10.1016/j.crhy.2007.07.004
  • Nemec H, Kuzel P, Duvillaret L, et al. Highly tunable photonic crystal filter for the terahertz range. Opt. Lett. 2005;30:549–551. doi:10.1364/OL.30.000549
  • Smith DR, Schult S, Markos P, et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys.Rev. B. 2002;65:195104–195108. doi:10.1103/PhysRevB.65.195104
  • Oughstun KE, Shen S. Dispersive pulse propagation in a double-resonance Lorentz medium. J. Opt. Soc. Am. B. 1988;5:2395–2398. doi:10.1364/JOSAB.5.002395

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.