94
Views
0
CrossRef citations to date
0
Altmetric
Articles

Miniaturized wide-band dual-polarized tightly coupled array for 5G millimeter-wave smartphones

, , , &
Pages 49-65 | Received 10 Mar 2023, Accepted 02 Oct 2023, Published online: 26 Oct 2023

References

  • Nguyen NT, Rolland A, Boriskin AV, et al. Size and weight reduction of integrated lens antennas using a cylindrical air cavity. IEEE Trans. Antennas Propag. 2012;60(12):5993–5998. doi:10.1109/TAP.2012.2208931
  • Kim E, Ko S-T, Lee YJ, et al. Millimeter-wave tiny lens antenna employing U-Shaped filter arrays for 5G. IEEE Antennas Wireless Propag. Lett. 2018;17(5):845–848. doi:10.1109/LAWP.2018.2819022
  • Wang X, Pan Y, Dong Y. An E-plane-focused triple-layer multibeam luneburg lens antenna for 5G millimeter-wave applications. IEEE Antennas Wireless Propag. Lett. 2022;21(2):227–231. doi:10.1109/LAWP.2021.3124129
  • Deckmyn T, Cauwe M, Vande Ginste D, et al. Dual-band (28,38) GHz coupled quarter-mode substrate-integrated waveguide antenna array for next-generation wireless systems. IEEE Trans. Antennas Propag. 2019;67(4):2405–2412. doi:10.1109/TAP.2019.2894325
  • Khalily M, Tafazolli R, Xiao P, et al. Broadband mm-wave microstrip array antenna with improved radiation characteristics for different 5G applications. IEEE Trans. Antennas Propag. 2018;66(9):4641–4647. doi:10.1109/TAP.2018.2845451
  • Sun W, Li Y, Chang L, et al. Dual-band dual-polarized microstrip antenna array using double-layer gridded patches for 5G millimeter-wave applications. IEEE Trans. Antennas Propag. 2021;69(10):6489–6499. doi:10.1109/TAP.2021.3070185
  • Zhu S, Liu H, Chen Z, et al. A compact gain-enhanced Vivaldi antenna array with suppressed mutual coupling for 5G mmWave application. IEEE Antennas Wireless Propag. Lett. 2018;17(5):776–779. doi:10.1109/LAWP.2018.2816038
  • Puskely J, Lacik J, Raida Z, et al. High-gain dielectric-loaded Vivaldi antenna for Ka-band applications. IEEE Antennas Wireless Propag. Lett. 2016;15:2004–2007. doi:10.1109/LAWP.2016.2550658
  • Zhou L, Tang M, Qian J, et al. Vivaldi antenna array with heat dissipation enhancement for millimeter-wave applications. IEEE Trans. Antennas Propag. 2022;70(1):288–295. doi:10.1109/TAP.2021.3091625
  • Seo J, Yoon I, Jung J, et al. Miniaturized dual-band broadside/endfire antenna-in-package for 5G smartphone. IEEE Trans. Antennas Propag. 2021;69(12):8100–8114. doi:10.1109/TAP.2021.3088230
  • Hao Z, Li B. Developing wideband planar millimeter-wave array antenna using compact magneto-electric dipoles. IEEE Antennas Wireless Propag. Lett. 2017;16:2102–2105. doi:10.1109/LAWP.2017.2697903
  • Yin J, Wu Q, Yu C, et al. Broadband endfire magnetoelectric dipole antenna array using SICL feeding network for 5G millimeter-wave applications. IEEE Trans. Antennas Propag. 2019;67(7):4895–4900. doi:10.1109/TAP.2019.2916463
  • Yu B, et al. A wideband mmWave antenna in fan-out wafer level packaging with tall vertical interconnects for 5G wireless communication. IEEE Trans. Antennas Propag. 2021;69(10):6906–6911. doi:10.1109/TAP.2021.3087859
  • Wang J, Li Y, Wu F, et al. Millimeter-wave wideband endfire magnetoelectric dipole antenna fed by substrate integrated coaxial line. IEEE Trans. Antennas Propag. 2022;70(3):2301–2306. doi:10.1109/TAP.2021.3137250
  • Hwang I-J, Oh J-I, Jo H-W, et al. 28 GHz and 38 GHz dual-band vertically stacked dipole antennas on flexible liquid crystal polymer substrates for millimeter-wave 5G cellular handsets. IEEE Trans. Antennas Propag. 2022;70(5):3223–3236. doi:10.1109/TAP.2021.3137234
  • Mailloux RJ. Phased array antenna handbook. 2nd ed. Norwood (MA): Artech House Inc.; 2005:1–30.
  • Logan JT, Kindt RW, Lee MY, et al. A new class of planar ultrawideband modular antenna arrays with improved bandwidth. IEEE Trans. Antennas Propag. 2018;66(2):692–701. doi:10.1109/TAP.2017.2780878
  • Zhong J, Johnson A, Alwan EA, et al. Dual-linear polarized phased array with 9:1 bandwidth and 60° scanning off broadside. IEEE Trans. Antennas Propag. 2019;67(3):1996–2001. doi:10.1109/TAP.2019.2891607
  • Hu C-H, Wang B-Z, Gao G-F, et al. Conjugate impedance matching method for wideband and wide-angle impedance matching layer with 70° scanning in the H-plane. IEEE Antennas Wireless Propag. Lett. 2021;20(1):63–67. doi:10.1109/LAWP.2020.3039521
  • Zhang H, Yang S, Xiao S, et al. Low-profile, lightweight, ultra-wideband tightly coupled dipole arrays loaded with split rings. IEEE Trans. Antennas Propag. 2019;67(6):4257–4262. doi:10.1109/TAP.2019.2905960
  • Hussain S, Qu S-W, Zhou W-L, et al. Design and fabrication of wideband dual-polarized dipole array for 5G wireless systems. IEEE Access. 2020;8:65155–65163. doi:10.1109/ACCESS.2020.2984613
  • Moghaddam SM, Yang J, Zaman AU. Fully-planar ultrawideband tightly-coupled array (FPU-TCA) with integrated feed for wide-scanning millimeter-wave applications. IEEE Trans. Antennas Propag. 2020;68(9):6591–6601. doi:10.1109/TAP.2020.3001448
  • Wheeler H. Simple relations derived from a phased-array antenna made of an infinite current sheet. IEEE Trans. Antennas Propag. 1965;13(4):506–514. doi:10.1109/TAP.1965.1138456
  • Munk BA. Frequency selective surfaces: theory and design. Hoboken (NJ): Wiley; 2005.
  • Moulder WF. Novel implementations of ultrawideband tightly coupled antenna arrays. Columbus (Ohio): The Ohio State University; 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.