78
Views
0
CrossRef citations to date
0
Altmetric
Articles

Active control of electromagnetic fields in layered media

, , , &
Pages 66-88 | Received 01 Oct 2022, Accepted 20 Aug 2023, Published online: 29 Nov 2023

References

  • Quijano JLA, Vecchi G. Field and source equivalence in source reconstruction on 3d surfaces. Prog Electromagn Res. 2010;103:67–100. doi: 10.2528/PIER10030309
  • Mohajer M, Safavi-Naeini S, Chaudhuri SK. Surface current source reconstruction for given radiated electromagnetic fields. IEEE Trans Antennas Propag. 2009;58(2):432–439. doi: 10.1109/TAP.2009.2037696
  • Kord A, Sounas DL, Alù A. Active microwave cloaking using parity-time-symmetric satellites. Phys Rev Appl. 2018;10(5):Article ID 054040. doi: 10.1103/PhysRevApplied.10.054040
  • Chen A, Monticone F. Active scattering-cancellation cloaking: broadband invisibility and stability constraints. IEEE Trans Antennas Propag. 2019;68(3):1655–1664. doi: 10.1109/TAP.8
  • Selvanayagam M, Eleftheriades GV. An active electromagnetic cloak using the equivalence principle. IEEE Antennas Wirel Propag Lett. 2012;11:1226–1229. doi: 10.1109/LAWP.2012.2224840
  • Bisht MS, Srivastava KV. Controlling electromagnetic scattering of a cylindrical obstacle using concentric array of current sources. IEEE Trans Antennas Propag. 2020;68(12):8044–8052. doi: 10.1109/TAP.8
  • Qian C, Zheng B, Shen Y, et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat Photonics. 2020;14(6):383–390. doi: 10.1038/s41566-020-0604-2
  • Chen PY, Soric J, Alù A. Invisibility and cloaking based on scattering cancellation. Adv Mater. 2012;24(44):OP281–OP304.
  • Selvanayagam M, Eleftheriades GV. Experimental demonstration of active electromagnetic cloaking. Phys Rev X. 2013;3(4):Article ID 041011.
  • Sengupta S, Council H, Jackson DR, et al. Active radar cross section reduction of an object using microstrip antennas. Radio Sci. 2020;55(2):1–20. doi: 10.1029/2019RS006939
  • Ang P, Eleftheriades GV. Active cloaking of a non-uniform scatterer. Sci Rep. 2020;10(1):1–11. doi: 10.1038/s41598-019-56847-4
  • Lopéz YA, Andrés FLH, Pino MR, et al. An improved super-resolution source reconstruction method. IEEE Trans Instrum Meas. 2009;58(11):3855–3866. doi: 10.1109/TIM.2009.2020847
  • Quijano JLA, Vecchi G. Improved-accuracy source reconstruction on arbitrary 3-d surfaces. IEEE Antennas Wirel Propag Lett. 2009;8:1046–1049. doi: 10.1109/LAWP.2009.2031988
  • Yao HM, Sha WE, Jiang LJ. Applying convolutional neural networks for the source reconstruction. Prog Electromagn Res M. 2018;76:91–99. doi: 10.2528/PIERM18082907
  • Foged L, Scialacqua L, Saccardi F, et al. Application of the dual-equation equivalent-current reconstruction to electrically large structures by fast multipole method enhancement [AMTA corner]. IEEE Antennas Propag Mag. 2014;56(5):264–273. doi: 10.1109/MAP.74
  • Persson K, Gustafsson M, Kristensson G, et al. Radome diagnostics – source reconstruction of phase objects with an equivalent currents approach. IEEE Trans Antennas Propag. 2014;62(4):2041–2051. doi: 10.1109/TAP.2014.2298534
  • Álvarez Y, Las-Heras F, Pino MR. Reconstruction of equivalent currents distribution over arbitrary three-dimensional surfaces based on integral equation algorithms. IEEE Trans Antennas Propag. 2007;55(12):3460–3468. doi: 10.1109/TAP.2007.910316
  • Cai X, Geyi W. An optimization method for the synthesis of flat-top radiation patterns in the near-and far-field regions. IEEE Trans Antennas Propag. 2018;67(2):980–987. doi: 10.1109/TAP.2018.2882653
  • Yu S, Liu H, Li L. Design of near-field focused metasurface for high-efficient wireless power transfer with multifocus characteristics. IEEE Trans Ind Electron. 2018;66(5):3993–4002. doi: 10.1109/TIE.2018.2815991
  • Ayestarán RG. Fast near-field multifocusing of antenna arrays including element coupling using neural networks. IEEE Antennas Wirel Propag Lett. 2018;17(7):1233–1237. doi: 10.1109/LAWP.2018.2840540
  • Iliopoulos I, Fuchs B, Sauleau R, et al. On the use of convex optimization for electromagnetic near-field shaping. In: 2017 11th European Conference on Antennas and Propagation (EUCAP). IEEE; 2017. p. 1013–1016
  • Ayestarán RG, León G, Pino MR, et al. Wireless power transfer through simultaneous near-field focusing and far-field synthesis. IEEE Trans Antennas Propag. 2019;67(8):5623–5633. doi: 10.1109/TAP.8
  • Nepa P, Buffi A. Near-field-focused microwave antennas: near-field shaping and implementation. IEEE Antennas Propag Mag. 2017;59(3):42–53. doi: 10.1109/MAP.2017.2686118
  • Iliopoulos I, Fuchs B, Sauleau R, et al. Scalar near-field focusing in lossy media. In: 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE; 2017. p. 718–721
  • Wu JW, Wu RY, Bo XC, et al. Synthesis algorithm for near-field power pattern control and its experimental verification via metasurfaces. IEEE Trans Antennas Propag. 2018;67(2):1073–1083. doi: 10.1109/TAP.2018.2882645
  • Clauzier S, Mikki SM, Antar YM. Design of near-field synthesis arrays through global optimization. IEEE Trans Antennas Propag. 2014;63(1):151–165. doi: 10.1109/TAP.2014.2367536
  • Egarguin NJA, Jackson DR, Onofrei D, et al. Adaptive beamforming using scattering from a drone swarm. In: 2020 IEEE Texas symposium on wireless and microwave circuits and systems (WMCS). Waco (TX): IEEE; 2020. p. 1–6.
  • Brown T, Narendra C, Vahabzadeh Y, et al. On the use of electromagnetic inversion for metasurface design. IEEE Trans Antennas Propag. 2019;68(3):1812–1824. doi: 10.1109/TAP.8
  • Huang C, Zhang C, Yang J, et al. Reconfigurable metasurface for multifunctional control of electromagnetic waves. Adv Opt Mater. 2017;5(22):Article ID 1700485. doi: 10.1002/adom.v5.22
  • Boardman A, Alberucci A, Assanto G, et al. Waves in hyperbolic and double negative metamaterials including rogues and solitons. Nanotechnology. 2017;28(44):Article ID 444001. doi: 10.1088/1361-6528/aa6792
  • Kurilkina SN, Petrov NS, Zimin AB, et al. Special inhomogeneous electromagnetic waves in hyperbolic metamaterials. J Opt. 2017 Nov;19(12):Article ID 125102. doi: 10.1088/2040-8986/aa945c
  • Chen J, Hu S, Zhu S, et al. Metamaterials: from fundamental physics to intelligent design. Interdiscip Materials. 2022 Jul;2:8.
  • Yin X, Zhu H, Guo H, et al. Hyperbolic metamaterial devices for wavefront manipulation. Laser Photon Rev. 2018;13:2–4.
  • Desouky M, Mahmoud A, Swillam M. Tunable mid IR focusing in InAS based semiconductor hyperbolic metamaterial. Sci Rep. 2017;7:2–3. doi: 10.1038/s41598-017-15493-4
  • Lee S, Baek S, Kim T, et al. Metamaterials for enhanced optical responses and their application to active control of terahertz waves. Adv Mater. 2020;32(35):3–5.
  • Abdelraouf O, Wang Z, Liu H, et al. Recent advances in tunable metasurfaces: materials, design, and applications. ACS Nano. 2022;16(9):Article ID 13339. doi: 10.1021/acsnano.2c04628
  • Marengo EA, Devaney AJ. The inverse source problem of electromagnetics: linear inversion formulation and minimum energy solution. IEEE Trans Antennas Propag. 1999;47(2):410–412. doi: 10.1109/8.761085
  • Egarguin NJA, Onofrei D, Qi C, et al. Active manipulation of Helmholtz scalar fields in an ocean of two homogeneous layers of constant depth. Inverse Probl Sci Eng. 2021;29(13):1–25.
  • Qi C, Egarguin NJA, Onofrei D, et al. Feasibility analysis for active near/far field acoustic pattern synthesis in free space and shallow water environments. Acta Acust. 2021;5:39. doi: 10.1051/aacus/2021030
  • Egarguin NJA, Onofrei D, Qi C, et al. Active manipulation of Helmholtz scalar fields: near-field synthesis with directional far-field control. Inverse Probl. 2020;36(9):Article ID 095005. doi: 10.1088/1361-6420/aba106
  • Onofrei D. Active manipulation of fields modeled by the Helmholtz equation. J Integral Equ Appl. 2014;26(4):553–572. doi: 10.1216/JIE-2014-26-4-553
  • Egarguin NJA, Onofrei D, Platt E. Sensitivity analysis for the active manipulation of Helmholtz fields in 3d. Inverse Probl Sci Eng. 2020;28(3):314–339. doi: 10.1080/17415977.2018.1555248
  • Onofrei D, Platt E. On the synthesis of acoustic sources with controllable near fields. Wave Motion. 2018;77:12–27. doi: 10.1016/j.wavemoti.2017.10.004
  • Zeng S, Egarguin NJA, Onofrei D, et al. Active control of electromagnetic waves in layered media using a current source. In: 2020 IEEE Texas symposium on wireless and microwave circuits and systems (WMCS). Waco (TX): IEEE; 2020. p. 1–6.
  • Onofrei D, Platt E, Egarguin NJA. Active manipulation of exterior electromagnetic fields by using surface sources. Q Appl Math. 2020;78(4):641–670. doi: 10.1090/qam/2020-78-04
  • Merzlikin AM, Puzko RS. Homogenization of Maxwell's equations in a layered system beyond the static approximation. Sci Rep. 2020;10(1):Article ID 15783. doi: 10.1038/s41598-020-72727-8
  • Angell TS, Kirsch A. Optimization methods in electromagnetic radiation. Springer Science & Business Media; 2004.
  • Qi C, Egarguin NJA, Zeng S, et al. Sensitivity analysis for active electromagnetic field manipulation in free space. Appl Math Sci. 2022;30(1):661–687. doi: 10.1080/27690911.2022.2118270
  • Epstein CL, Greengard L. Debye sources and the numerical solution of the time harmonic Maxwell equations. Commun Pure Appl Math. 2010;63(4):413–463.
  • Xiong XYZ, Sha WEI, Jun Jiang L. Helmholtz decomposition based on integral equation method for electromagnetic analysis. Microw Opt Technol Lett. 2014;56(8):1838–1843. doi: 10.1002/mop.v56.8
  • O'Neil M. A generalized Debye source approach to electromagnetic scattering in layered media. J Math Phys. 2014;55(1):Article ID 012901. doi: 10.1063/1.4862747
  • Fu X, Li J, Jiang LJ, et al. Generalized Debye sources-based EFIE solver on subdivision surfaces. IEEE Trans Antennas Propag. 2017;65(10):5376–5386. doi: 10.1109/TAP.2017.2740976
  • Epstein CL, Rachh M. Debye source representations for type-I superconductors, I: the static type I case. J Comput Phys. 2022;452:Article ID 110892. doi: 10.1016/j.jcp.2021.110892
  • Michalski KA, Mosig JR. Multilayered media Green's functions in integral equation formulations. IEEE Trans Antennas Propag. 1997;45(3):508–519. doi: 10.1109/8.558666
  • Li D, Wilton DR, Jackson DR, et al. Efficient computation of Green's functions for lossy uniaxial anisotropic layered media. Radio Sci. 2019;54(3):196–214. doi: 10.1029/2018RS006648
  • Aksun M, Dural G. Clarification of issues on the closed-form Green's functions in stratified media. IEEE Trans Antennas Propag. 2005;53(11):3644–3653. doi: 10.1109/TAP.2005.858571
  • Li D, Wilton DR, Jackson DR. Recent advances in evaluating Green's functions for multi-layered media and half-space problems. In: 2017 computing and electromagnetics international workshop (CEM). Barcelona (Spain): IEEE; 2017. p. 1–2.
  • Simsek E, Liu QH, Wei B. Singularity subtraction for evaluation of Green's functions for multilayer media. IEEE Trans Microw Theory Tech. 2006;54(1):216–225. doi: 10.1109/TMTT.2005.860304
  • Michalski KA. Extrapolation methods for Sommerfeld integral tails. IEEE Trans Antennas Propag. 1998;46(10):1405–1418. doi: 10.1109/8.725271
  • Mosig J. The weighted averages algorithm revisited. IEEE Trans Antennas Propag. 2012;60(4):2011–2018. doi: 10.1109/TAP.2012.2186244
  • Rao S, Wilton D, Glisson A. Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans Antennas Propag. 1982;30(3):409–418. doi: 10.1109/TAP.1982.1142818
  • Mueller JL, Siltanen S. Linear and nonlinear inverse problems with practical applications. SIAM; 2012.
  • Bonesky T. Morozov's discrepancy principle and Tikhonov-type functionals. Inverse Probl. 2008;25(1):Article ID 015015. doi: 10.1088/0266-5611/25/1/015015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.