48
Views
0
CrossRef citations to date
0
Altmetric
Articles

Design and verification of a tunable single-band metamaterial based on Polymeric Methyl Methacrylate and its feasibility for temperature detection in smart packaging

, &
Pages 185-202 | Received 25 May 2023, Accepted 06 Nov 2023, Published online: 15 Dec 2023

References

  • Papaioannou M, Plum E, Rogers ETF, et al. All-optical dynamic focusing of light via coherent absorption in a plasmonic metasurface. Light Sci Appl. 2018;7:17157. doi:10.1038/lsa.2017.157
  • Hougne PD, Fink M, Lerosey G. Optimally diverse communication channels in disordered environments with tuned randomness. Nature Electron. 2019;2:36–41. doi:10.1038/s41928-018-0190-1
  • Cui TJ, Liu S, Li LL. Information entropy of coding metasurface. Light Sci Appl. 2016;5:16172. doi:10.1038/lsa.2016.172
  • Hu GW, Hong XM, Wang K, et al. Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface. Nat Photonics. 2019;13:467–472. doi:10.1038/s41566-019-0399-1
  • Abdelsalam M, Mahmoud AM, Swillam MA. Polarization independent dielectric metasurface for infrared beam steering applications. Sci Rep. 2019;9:10824. doi:10.1038/s41598-019-47097-5
  • Chang T, Jeon S, Heo M, et al. Mimicking bio-mechanical principles in photonic metamaterials for giant broadband nonlinearity. Commun Phys. 2020;3:79. doi:10.1038/s42005-020-0352-0
  • Hougne PD, Imani MF, Sleasman T, et al. Dynamic Metasurface Aperture as Smart Around-the-Corner Motion Detector. Sci Reports. 2018;8:6536.
  • Landy NI, Sajuyigbe S, Mock JJ, et al. Perfect metamaterial absorber. Phys Rev Lett 2008;100:207402. doi:10.1103/PhysRevLett.100.207402
  • Luo M, Shen S, Zhou L, et al. Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime. Opt Express. 2017;25(14):16715–16724. doi:10.1364/OE.25.016715
  • Song Z, Wang K, Li J, et al. Broadband tunable terahertz absorber based on vanadium dioxide metamaterials. Opt Express. 2018;26(6):7148–7154. doi:10.1364/OE.26.007148
  • Xu J, Zhao Z, Yu H, et al. Design of tripleband metamaterial absorbers with refractive index sensitivity at infrared frequencies. Opt Express. 2016;24(22):25742–25751. doi:10.1364/OE.24.025742
  • Yin X, Schäferling M, Michel A-KU, et al. Active chiral plasmonics. Nano Lett. 2015;15(7):4255–4260. doi:10.1021/nl5042325
  • Song Z, Wang K, Li J, et al. Broadband tunable terahertz absorber based on vanadium dioxide metamaterials. Opt Express. 2018;26(6):7148–7154. doi:10.1364/OE.26.007148
  • Xu J, Zhao Z, Yu H, et al. Design of tripleband metamaterial absorbers with refractive index sensitivity at infrared frequencies. Opt Express. 2016;24(22):25742–25751. doi:10.1364/OE.24.025742
  • Buchnev O, Podoliak N, Kaczmarek M, et al. Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch. Adv Optical Mater. 2015;3:674–679. doi:10.1002/adom.201400494
  • Yao G, Ling F, Yue J, et al. Dual-band tunable perfect metamaterial absorber in the THz range. Optics Express. 2016;24(2), 1518-1527. doi:10.1364/OE.24.001518
  • Luo M, Shen S, Zhou L, et al. Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime. Opt Express. 2017;25(14):16715–16724. doi:10.1364/OE.25.016715
  • Mou J, Shen Z. Broadband and thin magnetic absorber with non-Foster metasurface for admittance matching. Scientific Reports. 2017;7:6922. doi:10.1038/s41598-017-07323-4
  • Liu G-D, Zhai X, Meng H-Y, et al. Dirac semimetals based tunable narrowband absorber at terahertz frequencies. Optics Express. Apr 2018;26(9 ):11471. doi:10.1364/OE.26.011471
  • He S, Chen T. Broadband THz Absorbers with graphene-based anisotropic metamaterial films. IEEE Transactions on Terahertz Science And Technology. Nov 2013;3(6):757–763. doi:10.1109/TTHZ.2013.2283370
  • Sui J-Y, Liao S-y, Li B, et al. High sensitivity multitasking non-reciprocity sensor using the photonic spin Hall effect. Optics Letters. 2022;47:6065. doi:10.1364/OL.476048
  • Guo S, Hu C, Zhang H. Unidirectional ultrabroadband and wide-angle absorption in graphene-embedded photonic crystals with the cascading structure comprising the Octonacci sequence. Journal of the Optical Society of America B. 2020;37:2678. doi:10.1364/JOSAB.399048
  • Liao S-y, Qiao Z, Sui J-y, et al. Multifunctional Device for Circular to Linear Polarization Conversion and Absorption. Ann Phys (Berlin). 2023;535:2300195. doi:10.1002/andp.202300195
  • Zhang S, Fan WJ, Paniou NC, et al. Optical negative-index bulk metamaterials consisting of 2D perforated metaldielectric stacks. Phys Rev Lett. 2005;95:137404. doi:10.1103/PhysRevLett.95.137404
  • Kuzel P, Kadlec F. Tunable structures and modulators for THz light. C R Physique. 2008;9:197–214. doi:10.1016/j.crhy.2007.07.004
  • Galinski H, Wyss A, Seregni M, et al. Disordered zero-index metamaterials based on metal-induced crystallization. NPG Asia Materials. 2019;11:58. doi:10.1038/s41427-019-0157-3
  • Manjappa M, Pitchappa P, Singh N, et al. Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies. Nature Communications. 2018;9:4056–4065. doi:10.1038/s41467-018-06360-5
  • Pérez-Díaz S, Cortés-López S, Pérez-Rodríguez F. Light diffraction by a nanograting with bimetallic metamaterial. Optical Materials. 2021;118:111231. doi:10.1016/j.optmat.2021.111231
  • Liu C, Liu P, Yang C, et al. Analogue of dual-controlled electromagnetically induced transparency based on graphene metamaterial. Carbon. 2019;142:354–362. doi:10.1016/j.carbon.2018.10.061
  • He X, Yao Y, Yang X, et al. Dynamically controlled electromagnetically induced transparency in terahertz graphene metamaterial for modulation and slow light applications. Opt Commun. 2018;410:206–210. doi:10.1016/j.optcom.2017.09.013
  • Xie Y, Fan X, Chen Y, et al. A subwavelength resolution microwave/6.3 GHz camera based on a metamaterial absorber. Scientific Reports. 2017;7:40490–7. doi:10.1038/srep40490
  • Khuyen BX, Tung BS, Yoo YJ, et al. Miniaturization for ultrathin metamaterial perfect absorber in the VHF band. Scientific Reports. 2017;7:45151–7. doi:10.1038/srep45151
  • Yuchao Zhang J, Yang X. Spatial variation of vector vortex beams with plasmonic Metasurfaces. Scientific Reports. 2019;9:9969. doi:10.1038/s41598-019-46433-z
  • Kwon H, Arbabi E, Kamali SM, et al. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nature Photonics volume. 2020;14:109–114. doi:10.1038/s41566-019-0536-x
  • Khorasaninejad M, Shi Z, Zhu AY, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 2017;17:1819–1824. doi:10.1021/acs.nanolett.6b05137
  • Liao S, Sui J, Zhang H. Switchable ultra-broadband absorption and polarization conversion metastructure controlled by light. Optics Express. 2022;30:34172.
  • Sui J, Liao S, Dong R, et al. A Janus logic gate with sensing function. Ann Phys (Berlin). 2023;535:2200661. doi:10.1002/andp.202200661

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.