54
Views
0
CrossRef citations to date
0
Altmetric
Articles

Analysis of electromagnetic wave ignition mechanism and calculation of power threshold in underground coal mine

, , , &
Pages 234-249 | Received 04 May 2023, Accepted 21 Nov 2023, Published online: 15 Dec 2023

References

  • Guofa W. New technological progress of coal mine intelligence and its problems. Coal Sci Technol. 2022;50(1):1–27. doi:10.13199/j.cnki.cst.2022.01.001.
  • Xiaobin F. Construction practice of 5G+ smart mine. Shaanxi Coal. 2022;41(6):205–210.
  • Wang Guofa ZJ. Construction of modern coal industry governance and safety guarantee system. Emergency Manag Sci China. 2022;22(6):117–129.
  • Liang Weifeng SJ, Ming P, Tao P. Research on safety power threshold of radio wave explosion protection in underground coal mine. Ind Min Autom. 2022;12(25):1–10.
  • Wang WB, Jiang HL, Zhang YP. Analysis of radio frequency risks in flammable and explosive environments. Adv Mater Res. 2015;1092–1093:717–721. doi:10.4028/www.scientific.net/AMR.1092-1093.1092
  • IEC. Explosive atmospheres-part 0: general requirements for equipment: [S]. Slovakia. 2017:22.
  • Choi S-W, Kwon H-M. Characteristics of induced voltage in loop structures from high-frequency radiation antenna. J KOSOS. 2012;27(5):49–54.
  • Maddocks AJ, Jackson GA. Measurements of radio frequency voltage and power induced in tructures on the St Fergus gas terminals. Radio Electron Eng. 1981;51(4):187–194. doi:10.1049/ree.1981.0024
  • Cho Y-J, Im K, Shon D, et al. Improvement of risk assessment using numerical analysis for an offshore plant dipole antenna. Symmetry. 2018;10(12):681. doi:10.3390/sym10120681
  • Spadacini G, Pignar SA. Numerical electromagnetic modeling of chemical plants for the assessment of radio frequency ignition hazards. 2011 xxxth URSI general assembly and scientific symposium, Istanbul; 2011. p. 1–4.
  • Liang Weifeng SJ, Ming P, Tao P. Research on safe power threshold of radio wave explosion-proof in coal mine. J Mine Autom. 2022;48(12):123–128.
  • Zi-Jian T, Shuai W, Chen-Xin L. Safe distance for telecommunication radiofrequency transmitter with frequency below 10 MHz in underground mines. J China Coal Soc. 2011;36(8):1417–1420.
  • Ong Z. Simulation analysis of explosion-proof electromagnetic energy coupled with radio frequency near field resonance in underground coal mine. Saf Coal Mines. 2022;53(8):134–138.
  • Howson PDP. Ignition of flammable gasair mixtures by sparks from 2 and 9 MHz sources1981.0022. Electron Radio Eng. 1981;51(4):170–174. doi:10.1049/ree.1981.0022
  • Allen SG. Radiofrequency field measurements and hazard assessment. J Radiol Prot. 1990;11(1):49–62.
  • Rosefeld JLJ, Strachan DC, Tromans PS, et al. Experiments on the incendivity of radio frequency breakflash discharges. Radio Electron Eng. 1981;51(4):175–186. doi:10.1049/ree.1981.0023
  • Burstow DJ. The radio frequency ignition hazards. Electron Radio Eng. 1981;51(4):151–168. doi:10.1049/ree.1981.0021
  • Robertson BS. Radio-frequency ignition hazards a review. IEE Proc. 1981;128(9):607–614.
  • Chen J, Hu Z, Wang S, et al. Investigation of wireless power transfer for smart grid on-line monitoring devices under HV condition. Procedia Comput Sci. 2016;83:1307–1312. doi:10.1016/j.procs.2016.04.273
  • Meng Jijian CY. Analysis and countermeasure of Influencing factors of wireless charging safety in underground coal mine. Coal Mine Saf. 2020;51(12):4.
  • Xia P. Electromagnetic wave radiation energy influences on safety of gas in coal mine. J China Coal Soc. 2013;4:6.
  • Zhang YT, Li QQ, Lou J, et al. The characteristics of atmospheric radio frequency discharges with frequency increasing at a constant power density. Appl Phys Lett. 2010;97(14):1415041–1415043. doi:10.1063/1.3496474.
  • Macdonald AD, Gaskell DU, Gitterman HN. Microwave breakdown in air, oxygen, and nitrogen. Phys Rev. 1963;130(5):1841–1850. doi:10.1103/PhysRev.130.1841
  • Boeuf JP, Chaudhury B, Zhu GQ. Theory and modeling of self-organization and propagation of filamentary plasma arrays in microwave breakdown at atmospheric pressure. Phys Rev Lett. 2010;104(1):015002. doi:10.1103/PhysRevLett.104.015002
  • Mao Z, Li Y, Cai Y, et al. Experimental Investigation of Material and Geometry Effects on Microwave Breakdown of Evanescent-Mode Cavity Resonators. IEEE Trans Microw Theory Tech. 2021;69(9):4001–4009. doi:10.1109/TMTT.2021.3084952

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.