27
Views
0
CrossRef citations to date
0
Altmetric
Articles

Ensuring the maximum amplitude of the electric field strength in given coordinates using a linear antenna array focused on a finite distance

&
Pages 411-427 | Received 11 Oct 2023, Accepted 19 Jan 2024, Published online: 09 Feb 2024

References

  • Iuzvik DA, Stepanov MA. Formation of the electric field strength maximum at a given point in space by a focused linear antenna array. 2023 IEEE 24th International conference of young professionals in electron devices and materials (EDM).
  • Iuzvik D, Stepanov M. Focusing of the electromagnetic field in several given areas of space. Prog Electromagn Res M. 2022;113:11–22. doi: 10.2528/PIERM22070704
  • Karimkashi S, Kishk AA. Focusing properties of Fresnel zone plate lens antennas in the near-field region. IEEE Trans Antennas Propag. 2011;59(5):1481–1487. doi: 10.1109/TAP.2011.2123069
  • Hansen R. Focal region characteristics of focused array antennas. IEEE Trans Antennas Propag. 1985;33(12):1328–1337. doi: 10.1109/TAP.1985.1143539
  • Sedelnikov YE, Testoedov NA. Antennas focused in the zone of the near radiated field. Fundamentals of the theory and technical applications [Antenny, sfokusirovannye v zone blizhnego izluchennogo polya. Osnovy teorii I technicheskie prilozheniya]. (in Russian). Krasnoyarsk. 2015;1:1–293.
  • Nizamutdinov RR. Study of the characteristics of linear focused antennas for radio wave technological and diagnostic devices [Issledovanie harakteristik lineinyh sfokusirovannyh antenn dlya radiovolnovyh tehnologicheskih i diagnosticheskih ustroystv]. (in Russian). Kazan. 2011;1:1–146.
  • Khalikova KN. Antennas focused in the near radiated field for microwave technology applications [Antenny sfokusirovannye v oblasti blizhnego izluchennogo polya dlya microvolnovyh technologiy]. (in Russian). Kazan. 2017;1:1–166.
  • Chu H-L, Mishra G, Sharma SK. Dual polarized Wideband Vivaldi 4(4 Subarray Antenna Aperture for 5G Massive MIMO Panels with Simultaneous Multiple Beams. 2018 18th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), 2018, pp. 1–2. doi: 10.1109/ANTEM.2018.8572871
  • Yu Smirnov V. Linear phased antenna arrays focused in the near field. [Lineynie fazirovannie antennie reshetki, sfokusirovannie v blizhney zone” (in Russian), News RGRTU [Vestnik RGRTU], 2008.
  • Brito JMC, Mendes LL, Gontijo JGS. Brazil 6G project – An Approach to Build a National-wise Framework for 6G Networks. 2020 2nd 6G Wireless Summit (6G SUMMIT), 2020, pp. 1–5. doi: 10.1109/6GSUMMIT49458.2020.9083775
  • Suyama S, Okuyama T, Nonaka N, et al. Recent studies on massive MIMO technologies for 5G evolution and 6G. 2022 IEEE Radio and Wireless Symposium (RWS), 2022, pp. 90–93. doi: 10.1109/RWS53089.2022.9719949
  • Dzogovic B, van Do T, Santos B, et al. Thunderbolt-3 backbone for augmented 5G network slicing in cloud-radio access networks. 2019 IEEE 2nd 5G World Forum (5GWF), Dresden, Germany, 2019, pp. 415–420. doi: 10.1109/5GWF.2019.8911710
  • Chi H-C, Chang W-H, Tseng M-C, et al. SDN-enabled framework for resilient traffic routing in 5G networks. 2022 23rd Asia-Pacific network operations and management symposium (APNOMS), Takamatsu, Japan, 2022, pp. 1–4. doi: 10.23919/APNOMS56106.2022.9919952
  • Li M, Huo M, Cheng X, et al. Research and application of AI in 5G network operation and maintenance. 2020 IEEE Intl Conf on parallel & distributed processing with applications, big data & cloud computing, sustainable computing & communications, social computing & networking (ISPA/BDCloud/SocialCom/SustainCom), Exeter, United Kingdom, 2020, pp. 1420–1425. doi: 10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00212
  • Hung M-H, Teng C-C, Chuang C-P, et al. A SDN controller monitoring architecture for 5G backhaul networks. 2022 23rd Asia-Pacific network operations and management symposium (APNOMS), Takamatsu, Japan, 2022, pp. 1–4. doi: 10.23919/APNOMS56106.2022.9919988
  • Gabriel F, Nguyen GT, Schmoll R-S, et al. Practical deployment of network coding for real-time applications in 5G networks. 2018 15th IEEE annual consumer communications & networking conference (CCNC), Las Vegas, NV, USA, 2018, pp. 1–2. doi: 10.1109/CCNC.2018.8319320
  • Corici M-I, Eichhorn F, Gowtham V, et al. How organic networking meets 6G campus network management challenges. 2023 26th conference on innovation in clouds, internet and networks and workshops (ICIN), Paris, France, 2023, pp. 169–173. doi: 10.1109/ICIN56760.2023.10073499
  • Tang X, Cao C, Wang Y, et al. Computing power network: the architecture of convergence of computing and networking towards 6G requirement. China Commun. 2021;18(2):175–185. doi: 10.23919/JCC.2021.02.011
  • Zong J, Liu Y, Liu H, et al. 6G cell-free network architecture. 2022 IEEE 2nd international conference on electronic technology, communication and information (ICETCI), Changchun, China, 2022, pp. 421–425. doi: 10.1109/ICETCI55101.2022.9832308
  • Corici M, Troudt E, Magedanz T, et al. Organic 6G networks: decomplexification of software-based core networks. 2022 Joint European conference on networks and communications & 6G summit (EuCNC/6G Summit), Grenoble, France, 2022, pp. 541–546. doi: 10.1109/EuCNC/6GSummit54941.2022.9815730
  • Cui H, Zhang J, Geng Y, et al. Space-air-ground integrated network (SAGIN) for 6G: requirements, architecture and challenges. China Commun. 2021;19(2):90–108, doi: 10.23919/JCC.2022.02.008
  • Hu Z, Zhang P, Zhang C, et al. Intelligent decision making framework for 6G network. China Commun. 2022;19(3):16–35. doi: 10.23919/JCC.2022.03.002
  • Inomata M, et al. Scattering effect up to 100 GHz Band for 6G. 2020 International symposium on antennas and propagation (ISAP), Osaka, Japan, 2021, pp. 749–750. doi: 10.23919/ISAP47053.2021.9391482.
  • Ziegler V, Yrjölä S. How to make 6G a general purpose technology: Prerequisites and value creation paradigm shift. 2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), Porto, Portugal, 2021, pp. 586–591. doi: 10.1109/EuCNC/6GSummit51104.2021.9482431
  • Shan L, Geyi W. Optimal design of focused antenna arrays. IEEE Trans Antennas Propag. 2014;62(11):5565–5571. doi: 10.1109/TAP.2014.2357421
  • Karimkashi S, Kishk AA. Focused microstrip array antenna using a dolph-chebyshev near-field design. IEEE Trans Antennas Propag. 2009;57(12):3813–3820. doi: 10.1109/TAP.2009.2033435
  • Li P-F, Qu S-W. Microwave imaging using focused array antenna. 2018 IEEE international symposium on antennas and propagation & USNC/URSI national radio science meeting, Boston, MA, USA, 2018, pp. 2131–2132. doi: 10.1109/APUSNCURSINRSM.2018.8608955
  • Sun L, Li P-F, Qu S-W, et al. A near-field focused array antenna with reconfigurable elements. 2016 IEEE 5th Asia-Pacific Conference on Antennas and Propagation (APCAP), 2016, pp. 319–320. doi: 10.1109/APCAP.2016.7843222
  • Buffi A, Serra AA, Nepa P, et al. A focused planar microstrip array for 2.4 GHz RFID readers. IEEE Trans Antennas Propag. 2010;58(5):1536–1544. doi: 10.1109/TAP.2010.2044331
  • Blanco D, Gómez-Tornero JL, Rajo-Iglesias E, et al. Radially polarized annular-slot leaky-wave antenna for three-dimensional near-field microwave focusing. IEEE Antennas Wirel Propag Lett. 2014;13:583–586. doi: 10.1109/LAWP.2014.2311854
  • Nayeri P, Elsherbeni AZ, Haupt RL. Broadband focusing using aperture-coupled microstrip patch antenna arrays. 2015 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, Portugal, 2015.
  • Álvarez J, Ayestarán R. Near field multifocusing on antenna arrays via non-convex optimisation. IET Microw Antennas Propag. 2014:754–764. doi: 10.1049/iet-map.2013.0563
  • Landesa L, Obelleiro F, Rodríguez JL, et al. Pattern synthesis of array antennas with additional isolation of near field arbitrary objects. Electronics Letters. 1998;34(16):1540–1542. doi: 10.1049/el:19981081
  • Bucci OM, Capozzoli A, D'Elia G. Power pattern synthesis of reconfigurable conformal arrays with near-field constraints. IEEE Trans Antennas Propag. 2004;52(1):132–141. doi: 10.1109/TAP.2003.820983
  • Steyskal H. Synthesis of antenna patterns with imposed near-field nulls. Electron Lett. 1994;30(24):2000–2001. doi: 10.1049/el:19941417
  • Comisso M, Buttazzoni G, Vescovo R. Reconfigurable antenna arrays with multiple requirements: a versatile 3D approach. Int J Antennas Propag. 2017;19:1–9. doi: 10.1155/2017/6752108
  • Phillips GM. Interpolation and approximation by polynomials. New York: Springer; 2003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.