35
Views
0
CrossRef citations to date
0
Altmetric
Articles

Design and mathematical modeling of DNG metamaterial having six-band capabilities with high effective medium ratio

&
Pages 704-723 | Received 07 Jun 2023, Accepted 24 Feb 2024, Published online: 07 Mar 2024

References

  • Smith DR, Padilla WJ, Vier DC, et al. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett. 2000;84(18):4184. doi:10.1103/PhysRevLett.84.4184
  • Pendry JB, Holden AJ, Stewart WJ, et al. Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett. 1996;76(25):4773. doi:10.1103/PhysRevLett.76.4773
  • Hussain M, Awan WA, Alzaidi MS, et al. Metamaterials and their application in the performance enhancement of reconfigurable antennas: a review. Micromachines. 2023;14(2):349. doi:10.3390/mi14020349
  • Pendry JB, Holden AJ, Robbins DJ, et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microw Theory Techniq. 1999;47(11):2075–2084. doi:10.1109/22.798002
  • Yen TJ, Padilla WJ, Fang N, et al. Terahertz magnetic response from artificial materials. Science. 2004;303(5663):1494–1496. doi:10.1126/science.1094025
  • Linden S, Enkrich C, Wegener M, et al. Magnetic response of metamaterials at 100 terahertz. Science. 2004;306(5700):1351–1353. doi:10.1126/science.1105371
  • Del Vescovo D, Giorgio I. Dynamic problems for metamaterials: review of existing models and ideas for further research. Int J Eng Sci. 2014;80:153–172. doi:10.1016/j.ijengsci.2014.02.022
  • Soukoulis CM, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat Photon. 2011;5(9):523–530. doi:10.1038/nphoton.2011.154
  • Zhang XY, Ren X, Zhang Y, et al. A novel auxetic metamaterial with enhanced mechanical properties and tunable auxeticity. Thin-Walled Struct. 2022;174:109162. doi:10.1016/j.tws.2022.109162
  • Cao Y, Ruan C, Chen K, et al. Research on a high-sensitivity asymmetric metamaterial structure and its application as microwave sensor. Sci Rep. 2022;12(1):1255. doi:10.1038/s41598-022-05255-2
  • Veselago VG. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov Phys Uspekhi. 1968;10(4):509–514. doi:10.1070/PU1968v010n04ABEH003699
  • Smith DR, Vier DC, Koschny T, et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E. 2005;71(3):036617. doi:10.1103/PhysRevE.71.036617
  • Shelby RA, Smith DR, Schultz S. Experimental verification of a negative index of refraction. Science. 2001;292(5514):77–79. doi:10.1126/science.1058847
  • Smith DR, Schultz S, Markoš P, et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B. 2002;65(19):195104. doi:10.1103/PhysRevB.65.195104
  • Leonhardt U. Optical conformal mapping. Science. 2006;312(5781):1777–1780. doi:10.1126/science.1126493
  • Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science. 2006;312(5781):1780–1782. doi:10.1126/science.1125907
  • Schurig D, Mock JJ, Justice BJ, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science. 2006;314(5801):977–980. doi:10.1126/science.1133628
  • Dong HW, Zhao SD, Wei P, et al. Systematic design and realization of double-negative acoustic metamaterials by topology optimization. Acta Materialia. 2019;172:102–120. doi:10.1016/j.actamat.2019.04.042
  • Kim H, Seo C. Inverse class-F power amplifier using the metamaterial structure on the harmonic control circuit. Microw Opt Technol Lett. 2008;50(11):2881–2884. doi:10.1002/mop.23836
  • Moniruzzaman M, Islam MT, Samsuzzaman M, et al. Gap coupled symmetric split ring resonator based near zero index ENG metamaterial for gain improvement of monopole antenna. Sci Rep. 2022;12(1):7406. doi:10.1038/s41598-022-11029-7
  • Patel SK, Surve J, Katkar V, et al. Machine learning assisted metamaterial-based reconfigurable antenna for low-cost portable electronic devices. Sci Rep. 2022;12(1):1–3. doi:10.1038/s41598-021-99269-x
  • Ibrahim A, Abutarboush H, Mohamed A, et al. An optimized ensemble model for prediction the bandwidth of metamaterial antenna. CMC-Comput Mater Continua. 2022;71(1):199–213. doi:10.32604/cmc.2022.021886
  • Abdelhamid A, Alotaibi SR. Robust prediction of the bandwidth of metamaterial antenna using deep learning. Comput Mater Continua. 2022;72(2):2305–2321. doi:10.32604/cmc.2022.025739
  • Khafaga D. Improved prediction of metamaterial antenna bandwidth using adaptive optimization of LSTM. Comput Mater Continua. 2022;73(1):865–881. doi:10.32604/cmc.2022.028550
  • Pires ES, Fontgalland G, Melo MAB, et al. Metamaterial-inspired wire antennas. IEEE Trans Mag. 2013;49(5):1893–1896. doi:10.1109/TMAG.2013.2245640
  • Chaurasia P, Kanaujia BK, Dwari S, et al. Design and analysis of seven-bands-slot-antenna with small frequency ratio for different wireless applications. AEU-Int J Electron Commun. 2019;99:100–109. doi:10.1016/j.aeue.2018.11.036
  • Brito DB, d'Assuncao AG, Maniçoba RH, et al. Metamaterial inspired Fabry–Pérot antenna with cascaded frequency selective surfaces. Microw Opt Technol Lett. 2013;55(5):981–985. doi:10.1002/mop.27531
  • Cao Y, Ruan C, Chen K, et al. Research on a high-sensitivity asymmetric metamaterial structure and its application as microwave sensor. Sci Rep. 2022;12(1):1255. doi:10.1038/s41598-022-05255-2
  • Lee CJ, Leong KM, Itoh T. Metamaterial transmission line based bandstop and bandpass filter designs using broadband phase cancellation. IEEE MTT-S International Microwave Symposium Digest. 2006; p. 935–938. doi:10.1109/MWSYM.2006.249870
  • Cheng Y, Fan J, Luo H, et al. Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial. IEEE Access. 2019;8:7615–7621. doi:10.1109/ACCESS.2019.2962299
  • Cheng Y, Li W, Mao X. Triple-band polarization angle independent 90° polarization rotator based on fermat's spiral structure planar chiral metamaterial. Prog Electromag Res. 2019;165:35–45. doi:10.2528/PIER18112603
  • Li W, Cheng Y. Dual-band tunable terahertz perfect metamaterial absorber based on strontium titanate (STO) resonator structure. Opt Commun. 2020;462:125265. doi:10.1016/j.optcom.2020.125265
  • Zou H, Cheng Y. Design of a six-band terahertz metamaterial absorber for temperature sensing application. Opt Mater. 2019;88:674–679. doi:10.1016/j.optmat.2019.01.002
  • Cheng Y, Zou Y, Luo H, et al. Compact ultra-thin seven-band microwave metamaterial absorber based on a single resonator structure. J Electron Mater. 2019;48:3939–3946. doi:10.1007/s11664-019-07156-z
  • Lavazec D, Cumunel G, Duhamel D, et al. Experimental evaluation and model of a nonlinear absorber for vibration attenuation. Commun Nonlin Sci Num Simul. 2019;69:386–397. doi:10.1016/j.cnsns.2018.10.009
  • Norouzi M, Jarchi S, Ghaffari-Miab M, et al. 3D metamaterial ultra-wideband absorber for curved surface. Sci Rep. 2023;13(1):1043. doi:10.1038/s41598-023-28021-4
  • Wang BX, Xu C, Duan G, et al. Miniaturized and actively tunable triple-band terahertz metamaterial absorber using an analogy I-typed resonator. Nanoscale Res Lett. 2022;17(1):35. doi:10.1186/s11671-022-03677-5
  • Zhang X, Sun H, Zhang X. Design and analysis of a novel LHM structure realized in low-frequency band. IEEE Trans Mag. 2019;55(6):1–4. doi:10.1109/tmag.2019.2896275
  • Zhang X, Zhao Y, Ho SL, et al. Analysis of wireless power transfer system based on 3-D finite-element method including displacement current. IEEE Trans Mag. 2012;48(11):3692–3695. doi:10.1109/TMAG.2012.2196263
  • Markoš P, Soukoulis CM. Transmission properties and effective electromagnetic parameters of double negative metamaterials. Opt Exp. 2003;11(7):649–661. doi:10.1364/OE.11.000649
  • Chen X, Grzegorczyk TM, Wu BI, et al. Robust method to retrieve the constitutive effective parameters of metamaterials. Phys Rev E. 2004;70(1):016608. doi:10.1103/PhysRevE.70.016608
  • Ziolkowski RW. Design, fabrication, and testing of double negative metamaterials. IEEE Trans Antennas Propag. 2003;51(7):1516–1529. doi:10.1109/TAP.2003.813622
  • Arslanagić S, Hansen TV, Mortensen NA, et al. A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization. IEEE Antennas Propag Magaz. 2013;55(2):91–106. doi:10.1109/MAP.2013.6529320
  • Khandelwal MK, Arora A, Kumar S, et al. Dual band double negative (DNG) metamaterial with small frequency ratio. J Electromag Waves Appl. 2018;32(17):2167–2181. doi:10.1080/09205071.2018.1498026
  • Numan AB, Sharawi MS. Extraction of material parameters for metamaterials using a full-wave simulator [education column]. IEEE Antennas Propag Magaz. 2013;55(5):202–211. doi:10.1109/MAP.2013.6735515
  • Bahl IJ. Lumped elements for RF and microwave circuits. Boston: Artech House; 2013.
  • Caloz C, Itoh T. Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip "LH line”. IEEE Antennas Propag Soc Int Symp (IEEE Cat. No. 02CH37313). 2002;2:412–415. doi:10.1109/APS.2002.1016111
  • Nuthakki VR, Dhamodharan S. Via-less CRLH-TL unit cells loaded compact and bandwidth-enhanced metamaterial based antennas. AEU-Int J Electron Commun. 2017;80:48–58. doi:10.1016/j.aeue.2017.06.033
  • Chi PL, Shih YS. Compact and bandwidth-enhanced zeroth-order resonant antenna. IEEE Antennas Wirel Propag Lett. 2014;14:285–288. doi:10.1109/LAWP.2014.2363087
  • Itoh T, Caloz C. Electromagnetic metamaterials: transmission line theory and microwave applications. John Wiley & Sons; 2005. doi:10.1002/0471754323
  • Sharma SK, Chaudhary RK. A compact zeroth-order resonating wideband antenna with dual-band characteristics. IEEE Antennas Wirel Propag Lett. 2015;14:1670–1672. doi:10.1109/LAWP.2015.2417889
  • Chaurasia P, Kanaujia BK, Dwari S, et al. Theoretical circuit modeling of tetra bands DNG metamaterial by transmission line theory with very small frequency. J Comput Electron. 2021;20:1439–1451. doi:10.1007/s10825-021-01708-5
  • Ma Y, Zhang H, Li Y, et al. Miniaturized and dual-band metamaterial absorber with fractal Sierpinski structure. J Opt Soc Am B. 2014;31(2):325–331. doi:10.1364/JOSAB.31.000325
  • Yang D, Xia Y. Experimental verification of multi-band metamaterial absorber with double structured layers. Mater Res Exp. 2020;7(3):035801. doi:10.1088/2053-1591/ab7e4d

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.