94
Views
0
CrossRef citations to date
0
Altmetric
Articles

Vanadium dioxide-based H-shaped terahertz metasurface for beam modulation

, , , , , & show all
Pages 833-841 | Received 23 Jan 2024, Accepted 31 Mar 2024, Published online: 14 Apr 2024

References

  • Nagatsuma T, Ducournau G, Renaud CC. Advances in terahertz communications accelerated by photonics. Nat Photon. 2016;10:371–379. doi:10.1038/nphoton.2016.65
  • Ummethala S, Harter T, Koehnle K, et al. THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator. Nat Photon. 2019;13:519–524. doi:10.1038/s41566-019-0475-6
  • Yan D, Meng M, Li J, et al. Vanadium dioxide-assisted broadband absorption and linear-to-circular polarization conversion based on a single metasurface design for the terahertz wave. Opt Exp. 2020;28:29843–29854. doi:10.1364/OE.404829
  • Xie J, Ye W, Zhou L, et al. A review on terahertz technologies accelerated by silicon photonics. Nanomaterials. 2021;11:1646. doi:10.3390/nano11071646
  • Pan C, Ren H, Wang K, et al. Reconfigurable intelligent surfaces for 6G systems: principles, applications, and research directions. IEEE Commun Magaz. 2021;59:14–20. doi:10.1109/MCOM.001.2001076
  • Seeds AJ, Shams H, Fice MJ, et al. Terahertz photonics for wireless communications. J Lightwave Technol. 2015;33:579–587. doi:10.1109/JLT.2014.2355137
  • Di Renzo M, Zappone A, Debbah M, et al. Smart radio environments empowered by reconfigurable intelligent surfaces: how it works, state of research, and the road ahead. IEEE J Sel Areas Commun. 2020;38:2450–2525. doi:10.1109/JSAC.2020.3007211
  • Dai J, Zhu F, Pan C, et al. Two-timescale design for RIS-aided full-duplex MIMO systems with transceiver hardware impairments. IET Commun. 2023;17:98–109. doi:10.1049/cmu2.12515
  • Li H, Xi J, He M, et al. Beam tracking method based on reconfigurable intelligent surface for obstructed communication. Chin J Aeronaut. 2022;35:158–167. doi:10.1016/j.cja.2021.08.019
  • Lu X, Hossain E, Shafique T, et al. Intelligent reflecting surface enabled covert communications in wireless networks. IEEE Network. 2020;34:148–155. doi:10.1109/MNET.011.1900579
  • Pitilakis A, Tsilipakos O, Liu F, et al. A multi-functional reconfigurable metasurface: electromagnetic design accounting for fabrication aspects. IEEE Trans Antennas Propag. 2021;69:1440–1454. doi:10.1109/TAP.2020.3016479
  • Liang Y, Koshelev K, Zhang F, et al. Bound states in the continuum in anisotropic plasmonic metasurfaces. Nano Lett. 2020;20:6351–6356. doi:10.1021/acs.nanolett.0c01752
  • Wang S, Qin W, Zhang S, et al. Nanoengineered spintronic-metasurface terahertz emitters enable beam steering and full polarization control. Nano Lett. 2022;22:10111–10119. doi:10.1021/acs.nanolett.2c03906
  • Ghosh S, Bhattacharyya S, Das S. Graphene-based metasurface for wideband linear to circular polarization conversion; 2020.
  • Jia M, Jiang M, Zeng L, et al. Asymmetric terahertz polarizer based on VO2 composite metasurface. Phys E: Low-Dimen Syst Nanostruct. 2022;144:115473. doi:10.1016/j.physe.2022.115473
  • Mukhopadhyay S, Kumar N, Ghosh SK, et al. A polarization insensitive dual-functional vanadium dioxide (VO2)-based metasurface structure in the terahertz gap. 2023 IEEE Wireless Antenna and Microwave Symposium (WAMS); 2023. pp. 1–4.
  • Duan X, White ST, Cui Y, et al. Reconfigurable multistate optical systems enabled by VO(2) phase transitions. ACS Photon. 2020;7:2958–2965. doi:10.1021/acsphotonics.0c01241
  • Hashemi MR, Yang SH, Wang T, et al. Electronically-controlled beam-steering through vanadium dioxide metasurfaces. Sci Rep. 2016;6:35439. doi:10.1038/srep35439
  • He X, Wang Y, Tao M, et al. Dynamical switching of electromagnetically induced reflectance in complementary terahertz metamaterials. Opt Commun. 2019;448:98–103. doi:10.1016/j.optcom.2019.04.086
  • Wang B, Liu J, Liu J, et al. Enhanced terahertz third-harmonic generation in graphene–metal metasurface with bound states in the continuum. J Appl Phys. 2023;133:023103. doi:10.1063/5.0132059
  • Xu X, Zhang C, Jiang J, et al. Actively tunable and switchable electromagnetically induced transparency in hybrid metal-graphene metamaterials. Mater Res Exp. 2021;8:025802. doi:10.1088/2053-1591/abe102
  • Wu PC, Pala RA, Kafaie Shirmanesh G, et al. Dynamic beam steering with all-dielectric electro-optic III-V multiple-quantum-well metasurfaces. Nat Commun. 2019;10:3654. doi:10.1038/s41467-019-11598-8
  • Li J, Yu P, Zhang S, et al. Electrically-controlled digital metasurface device for light projection displays. Nat Commun. 2020;11:3574. doi:10.1038/s41467-020-17390-3
  • Liu CX, Yang F, Fu XJ, et al. Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals. Adv Opt Mater. 2021;9:2100932. doi:10.1002/adom.202100932
  • Perez-Palomino G, Barba M, Encinar JA, et al. Design and demonstration of an electronically scanned reflectarray antenna at 100 GHz using multiresonant cells based on liquid crystals. IEEE Trans Antennas Propag. 2015;63:3722–3727. doi:10.1109/TAP.2015.2434421
  • Wu J, Shen Z, Ge S, et al. Liquid crystal programmable metasurface for terahertz beam steering. Appl Phys Lett. 2020;116:131104. doi:10.1063/1.5144858
  • Liu M, Hwang HY, Tao H, et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature. 2012;487:345–348. doi:10.1038/nature11231
  • Wang L, Yang Y, Gao F, et al. Terahertz reconfigurable dielectric metasurface hybridized with vanadium dioxide for two-dimensional multichannel multiplexing. Front Phys. 2022;10:2.
  • Qian C, Zheng B, Shen Y, et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat Photon. 2020;14:383–390. doi:10.1038/s41566-020-0604-2
  • Li L, Ruan H, Liu C, et al. Machine-learning reprogrammable metasurface imager. Nat Commun. 2019;10:1082. doi:10.1038/s41467-019-09103-2
  • Hall T, Lie DYC, Nguyen TQ, et al. Non-contact sensor for long-term continuous vital signs monitoring: a review on intelligent phased-array Doppler sensor design. Sensors. 2017;17:2632. doi:10.3390/s17112632
  • Chen B, Wang X, Li W, et al. Electrically addressable integrated intelligent terahertz metasurface. Sci Adv. 2022;8:eadd1296. doi:10.1126/sciadv.add1296
  • Sherrott MC, Hon PWC, Fountaine KT, et al. Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces. Nano Lett. 2017;17:3027–3034. doi:10.1021/acs.nanolett.7b00359
  • Meng X, Nekovee M, Wu D. The design and analysis of electronically reconfigurable liquid crystal-based reflectarray metasurface for 6G beamforming, beamsteering, and beamsplitting. IEEE Access. 2021;9:155564–155575. doi:10.1109/ACCESS.2021.3125837
  • Li C, Song Z. Tailoring terahertz wavefront with state switching in VO2 pancharatnam–berry metasurfaces. Opt Laser Technol. 2023;157:108764. doi:10.1016/j.optlastec.2022.108764
  • Liu F, Kwon D, Tretyakov S. Reflectarrays and metasurface reflectors as diffraction gratings. IEEE Antennas Propag Magaz. 2023;65:21–32. doi:10.1109/MAP.2023.3236278
  • Hou Z-L, Du K, Zhang Y, et al. Nanoarchitectonics of MnO2 nanotubes as sea urchin-like aggregates for dielectric response and microwave absorption with a wide concentration domain. Nano Res. 2023;16:2604–2610. doi:10.1007/s12274-022-5099-3
  • Grunin A, Zhdanov A, Ezhov A, et al. Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings. Appl Phys Lett. 2010;97:261908. doi:10.1063/1.3533260
  • Zhang S, Wang Y, Huo P, et al. Plasmonic spin-multiplexing metasurface for controlling the generation and in-plane propagation of surface plasmon polaritons. J Appl Phys. 2023;133:133101. doi:10.1063/5.0144421
  • Chen B, Wu J, Li W, et al. Programmable terahertz metamaterials with non-volatile memory. Laser Photon Rev. 2022;16:2100472. doi:10.1002/lpor.202100472

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.